Optimal. Leaf size=26 \[ 2 (-4+x)-x-256 e^{\frac {2 \left (e^x+x\right )}{x}} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 45, normalized size of antiderivative = 1.73, number of steps used = 2, number of rules used = 1, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {2288} \begin {gather*} \frac {256 e^{x+\frac {2 \left (x+e^x\right )}{x}} (1-x)}{\frac {e^x+1}{x}-\frac {x+e^x}{x^2}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int e^{\frac {2 \left (e^x+x\right )}{x}} \left (e^x (512-512 x)-512 x\right ) \, dx\\ &=x+\frac {256 e^{x+\frac {2 \left (e^x+x\right )}{x}} (1-x)}{\frac {1+e^x}{x}-\frac {e^x+x}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 0.73 \begin {gather*} x-256 e^{2+\frac {2 e^x}{x}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.65 \begin {gather*} -256 \, x^{2} e^{\left (\frac {2 \, {\left (x + e^{x}\right )}}{x}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 17, normalized size = 0.65 \begin {gather*} -256 \, x^{2} e^{\left (\frac {2 \, {\left (x + e^{x}\right )}}{x}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.69
method | result | size |
risch | \(x -256 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{x}+2 x}{x}} x^{2}\) | \(18\) |
default | \(x -256 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{x}+2 x}{x}} x^{2}\) | \(19\) |
norman | \(x -256 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{x}+2 x}{x}} x^{2}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 17, normalized size = 0.65 \begin {gather*} -256 \, x^{2} e^{\left (\frac {2 \, e^{x}}{x} + 2\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 17, normalized size = 0.65 \begin {gather*} x-256\,x^2\,{\mathrm {e}}^2\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^x}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 17, normalized size = 0.65 \begin {gather*} - 256 x^{2} e^{\frac {2 \left (x + e^{x}\right )}{x}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________