Optimal. Leaf size=28 \[ \frac {3}{5} e^{\frac {4}{x}-x} (-2-e-2 x)-\log (2) \]
________________________________________________________________________________________
Rubi [F] time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {4-x^2}{x}} \left (24+24 x+6 x^3+e \left (12+3 x^2\right )\right )}{5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{\frac {4-x^2}{x}} \left (24+24 x+6 x^3+e \left (12+3 x^2\right )\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{\frac {4}{x}-x} \left (12 (2+e)+24 x+3 e x^2+6 x^3\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (3 e^{1+\frac {4}{x}-x}+\frac {12 e^{\frac {4}{x}-x} (2+e)}{x^2}+\frac {24 e^{\frac {4}{x}-x}}{x}+6 e^{\frac {4}{x}-x} x\right ) \, dx\\ &=\frac {3}{5} \int e^{1+\frac {4}{x}-x} \, dx+\frac {6}{5} \int e^{\frac {4}{x}-x} x \, dx+\frac {24}{5} \int \frac {e^{\frac {4}{x}-x}}{x} \, dx+\frac {1}{5} (12 (2+e)) \int \frac {e^{\frac {4}{x}-x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 23, normalized size = 0.82 \begin {gather*} \frac {3}{5} e^{\frac {4}{x}-x} (-2-e-2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 20, normalized size = 0.71 \begin {gather*} -\frac {3}{5} \, {\left (2 \, x + e + 2\right )} e^{\left (-\frac {x^{2} - 4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.08, size = 44, normalized size = 1.57 \begin {gather*} -\frac {6}{5} \, x e^{\left (-\frac {x^{2} - 4}{x}\right )} - \frac {3}{5} \, e^{\left (-\frac {x^{2} - x - 4}{x}\right )} - \frac {6}{5} \, e^{\left (-\frac {x^{2} - 4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 0.75
method | result | size |
gosper | \(-\frac {3 \,{\mathrm e}^{-\frac {x^{2}-4}{x}} \left (2 x +{\mathrm e}+2\right )}{5}\) | \(21\) |
risch | \(\frac {\left (-3 \,{\mathrm e}-6-6 x \right ) {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}}}{5}\) | \(24\) |
norman | \(\frac {\left (-\frac {6}{5}-\frac {3 \,{\mathrm e}}{5}\right ) x \,{\mathrm e}^{\frac {-x^{2}+4}{x}}-\frac {6 x^{2} {\mathrm e}^{\frac {-x^{2}+4}{x}}}{5}}{x}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 19, normalized size = 0.68 \begin {gather*} -\frac {3}{5} \, {\left (2 \, x + e + 2\right )} e^{\left (-x + \frac {4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.47, size = 21, normalized size = 0.75 \begin {gather*} -{\mathrm {e}}^{\frac {4}{x}-x}\,\left (\frac {6\,x}{5}+\frac {3\,\mathrm {e}}{5}+\frac {6}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 20, normalized size = 0.71 \begin {gather*} \frac {\left (- 6 x - 3 e - 6\right ) e^{\frac {4 - x^{2}}{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________