Optimal. Leaf size=29 \[ x+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right )+\log (-2+i \pi +\log (3)) \]
________________________________________________________________________________________
Rubi [A] time = 1.15, antiderivative size = 37, normalized size of antiderivative = 1.28, number of steps used = 9, number of rules used = 2, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6742, 2548} \begin {gather*} 2 x^2+x \log \left (\frac {e^{4 x}}{x^2}-x+2\right )-\frac {1}{2} (1-2 x)^2-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2548
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+4 x-\frac {x^2 \left (4-11 x+4 x^2\right )}{-e^{4 x}-2 x^2+x^3}+\log \left (2+\frac {e^{4 x}}{x^2}-x\right )\right ) \, dx\\ &=-x+2 x^2-\int \frac {x^2 \left (4-11 x+4 x^2\right )}{-e^{4 x}-2 x^2+x^3} \, dx+\int \log \left (2+\frac {e^{4 x}}{x^2}-x\right ) \, dx\\ &=-x+2 x^2+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right )-\int \frac {-x^3+e^{4 x} (-2+4 x)}{e^{4 x}-(-2+x) x^2} \, dx-\int \left (\frac {4 x^2}{-e^{4 x}-2 x^2+x^3}-\frac {11 x^3}{-e^{4 x}-2 x^2+x^3}+\frac {4 x^4}{-e^{4 x}-2 x^2+x^3}\right ) \, dx\\ &=-x+2 x^2+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right )-4 \int \frac {x^2}{-e^{4 x}-2 x^2+x^3} \, dx-4 \int \frac {x^4}{-e^{4 x}-2 x^2+x^3} \, dx+11 \int \frac {x^3}{-e^{4 x}-2 x^2+x^3} \, dx-\int \left (2 (-1+2 x)-\frac {x^2 \left (4-11 x+4 x^2\right )}{-e^{4 x}-2 x^2+x^3}\right ) \, dx\\ &=-\frac {1}{2} (1-2 x)^2-x+2 x^2+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right )-4 \int \frac {x^2}{-e^{4 x}-2 x^2+x^3} \, dx-4 \int \frac {x^4}{-e^{4 x}-2 x^2+x^3} \, dx+11 \int \frac {x^3}{-e^{4 x}-2 x^2+x^3} \, dx+\int \frac {x^2 \left (4-11 x+4 x^2\right )}{-e^{4 x}-2 x^2+x^3} \, dx\\ &=-\frac {1}{2} (1-2 x)^2-x+2 x^2+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right )-4 \int \frac {x^2}{-e^{4 x}-2 x^2+x^3} \, dx-4 \int \frac {x^4}{-e^{4 x}-2 x^2+x^3} \, dx+11 \int \frac {x^3}{-e^{4 x}-2 x^2+x^3} \, dx+\int \left (\frac {4 x^2}{-e^{4 x}-2 x^2+x^3}-\frac {11 x^3}{-e^{4 x}-2 x^2+x^3}+\frac {4 x^4}{-e^{4 x}-2 x^2+x^3}\right ) \, dx\\ &=-\frac {1}{2} (1-2 x)^2-x+2 x^2+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 19, normalized size = 0.66 \begin {gather*} x+x \log \left (2+\frac {e^{4 x}}{x^2}-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 25, normalized size = 0.86 \begin {gather*} x \log \left (-\frac {x^{3} - 2 \, x^{2} - e^{\left (4 \, x\right )}}{x^{2}}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 25, normalized size = 0.86 \begin {gather*} x \log \left (-\frac {x^{3} - 2 \, x^{2} - e^{\left (4 \, x\right )}}{x^{2}}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 278, normalized size = 9.59
method | result | size |
risch | \(x \ln \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )-2 x \ln \relax (x )+\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}-i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )}{x^{2}}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )}{x^{2}}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-i \pi x \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )}{x^{2}}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )}{x^{2}}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{4 x}+x^{3}-2 x^{2}\right )}{x^{2}}\right )^{3}}{2}+i x \pi +x\) | \(278\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 25, normalized size = 0.86 \begin {gather*} x \log \left (-x^{3} + 2 \, x^{2} + e^{\left (4 \, x\right )}\right ) - 2 \, x \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.64, size = 24, normalized size = 0.83 \begin {gather*} x\,\left (\ln \left (\frac {{\mathrm {e}}^{4\,x}+2\,x^2-x^3}{x^2}\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 20, normalized size = 0.69 \begin {gather*} x \log {\left (\frac {- x^{3} + 2 x^{2} + e^{4 x}}{x^{2}} \right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________