Optimal. Leaf size=25 \[ \frac {3 \log \left (3-e^x+x+x^2 (1+x)-\log (x)\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3-3 x+3 e^x x-6 x^2-9 x^3+\left (9-3 e^x+3 x+3 x^2+3 x^3-3 \log (x)\right ) \log \left (3-e^x+x+x^2+x^3-\log (x)\right )}{-3 x^2+e^x x^2-x^3-x^4-x^5+x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 \left (1+2 x-x^2-2 x^3+x^4-x \log (x)\right )}{x^2 \left (3-e^x+x+x^2+x^3-\log (x)\right )}+\frac {3 \left (x-\log \left (3-e^x+x+x^2+x^3-\log (x)\right )\right )}{x^2}\right ) \, dx\\ &=-\left (3 \int \frac {1+2 x-x^2-2 x^3+x^4-x \log (x)}{x^2 \left (3-e^x+x+x^2+x^3-\log (x)\right )} \, dx\right )+3 \int \frac {x-\log \left (3-e^x+x+x^2+x^3-\log (x)\right )}{x^2} \, dx\\ &=-\left (3 \int \frac {\left (1+x-x^2\right )^2-x \log (x)}{x^2 \left (3-e^x+x+x^2+x^3-\log (x)\right )} \, dx\right )+3 \int \left (\frac {1}{x}-\frac {\log \left (3-e^x+x+x^2+x^3-\log (x)\right )}{x^2}\right ) \, dx\\ &=3 \log (x)-3 \int \left (\frac {1}{x^2 \left (3-e^x+x+x^2+x^3-\log (x)\right )}+\frac {2}{x \left (3-e^x+x+x^2+x^3-\log (x)\right )}-\frac {2 x}{3-e^x+x+x^2+x^3-\log (x)}+\frac {x^2}{3-e^x+x+x^2+x^3-\log (x)}-\frac {\log (x)}{x \left (3-e^x+x+x^2+x^3-\log (x)\right )}+\frac {1}{-3+e^x-x-x^2-x^3+\log (x)}\right ) \, dx-3 \int \frac {\log \left (3-e^x+x+x^2+x^3-\log (x)\right )}{x^2} \, dx\\ &=3 \log (x)-3 \int \frac {1}{x^2 \left (3-e^x+x+x^2+x^3-\log (x)\right )} \, dx-3 \int \frac {x^2}{3-e^x+x+x^2+x^3-\log (x)} \, dx+3 \int \frac {\log (x)}{x \left (3-e^x+x+x^2+x^3-\log (x)\right )} \, dx-3 \int \frac {1}{-3+e^x-x-x^2-x^3+\log (x)} \, dx-3 \int \frac {\log \left (3-e^x+x+x^2+x^3-\log (x)\right )}{x^2} \, dx-6 \int \frac {1}{x \left (3-e^x+x+x^2+x^3-\log (x)\right )} \, dx+6 \int \frac {x}{3-e^x+x+x^2+x^3-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 24, normalized size = 0.96 \begin {gather*} \frac {3 \log \left (3-e^x+x+x^2+x^3-\log (x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.14, size = 23, normalized size = 0.92 \begin {gather*} \frac {3 \, \log \left (x^{3} + x^{2} + x - e^{x} - \log \relax (x) + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 24, normalized size = 0.96
method | result | size |
risch | \(\frac {3 \ln \left (-\ln \relax (x )-{\mathrm e}^{x}+x^{3}+x^{2}+x +3\right )}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 23, normalized size = 0.92 \begin {gather*} \frac {3 \, \log \left (x^{3} + x^{2} + x - e^{x} - \log \relax (x) + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 23, normalized size = 0.92 \begin {gather*} \frac {3\,\ln \left (x-{\mathrm {e}}^x-\ln \relax (x)+x^2+x^3+3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.59, size = 20, normalized size = 0.80 \begin {gather*} \frac {3 \log {\left (x^{3} + x^{2} + x - e^{x} - \log {\relax (x )} + 3 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________