3.26.70 e15+5x(39x8x24x3+x4)log(x)(585+315x+20x235x3+5x4+(585+240x+140x2100x3+15x4)log(x))(1521x2624x3248x4+142x58x7+x8)log2(x)dx

Optimal. Leaf size=31 e5x(3+x)(4+13+x+x)log(x)+log(2)

________________________________________________________________________________________

Rubi [F]  time = 13.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(15+5x(39x8x24x3+x4)log(x))(585+315x+20x235x3+5x4+(585+240x+140x2100x3+15x4)log(x))(1521x2624x3248x4+142x58x7+x8)log2(x)dx

Verification is not applicable to the result.

[In]

Int[(E^((-15 + 5*x)/((39*x - 8*x^2 - 4*x^3 + x^4)*Log[x]))*(-585 + 315*x + 20*x^2 - 35*x^3 + 5*x^4 + (-585 + 2
40*x + 140*x^2 - 100*x^3 + 15*x^4)*Log[x]))/((1521*x^2 - 624*x^3 - 248*x^4 + 142*x^5 - 8*x^7 + x^8)*Log[x]^2),
x]

[Out]

((-220*I)/7267)*Sqrt[3]*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((7 + I*Sqrt[3] - 2*x)*
Log[x]^2), x] - (5*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/(x^2*Log[x]^2), x])/13 + (25
*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/(x*Log[x]^2), x])/507 - (10*Defer[Int][E^((-15
 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((3 + x)*Log[x]^2), x])/129 + (205*(3 - (7*I)*Sqrt[3])*Defer[Int]
[E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 - I*Sqrt[3] + 2*x)*Log[x]^2), x])/21801 - ((220*I)/7
267)*Sqrt[3]*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 + I*Sqrt[3] + 2*x)*Log[x]^2),
 x] + (205*(3 + (7*I)*Sqrt[3])*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 + I*Sqrt[3]
 + 2*x)*Log[x]^2), x])/21801 + (((170*I)/559)*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/(
(7 + I*Sqrt[3] - 2*x)*Log[x]), x])/Sqrt[3] - (5*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))
/(x^2*Log[x]), x])/13 + (10*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((3 + x)^2*Log[x]),
 x])/43 + (((170*I)/559)*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 + I*Sqrt[3] + 2*x
)*Log[x]), x])/Sqrt[3] - (775*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((13 - 7*x + x^2)
^2*Log[x]), x])/559 + (185*Defer[Int][(E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))*x)/((13 - 7*x + x^2
)^2*Log[x]), x])/559

Rubi steps

integral=e15+5xx(398x4x2+x3)log(x)(585+315x+20x235x3+5x4+(585+240x+140x2100x3+15x4)log(x))x2(398x4x2+x3)2log2(x)dx=(5e15+5xx(398x4x2+x3)log(x)(3+x)x2(3+x)(137x+x2)log2(x)+5e15+5xx(398x4x2+x3)log(x)(117+48x+28x220x3+3x4)x2(3+x)2(137x+x2)2log(x))dx=5e15+5xx(398x4x2+x3)log(x)(3+x)x2(3+x)(137x+x2)log2(x)dx+5e15+5xx(398x4x2+x3)log(x)(117+48x+28x220x3+3x4)x2(3+x)2(137x+x2)2log(x)dx=5(e15+5xx(398x4x2+x3)log(x)13x2log2(x)+5e15+5xx(398x4x2+x3)log(x)507xlog2(x)2e15+5xx(398x4x2+x3)log(x)129(3+x)log2(x)+e15+5xx(398x4x2+x3)log(x)(66+41x)7267(137x+x2)log2(x))dx+5(e15+5xx(398x4x2+x3)log(x)13x2log(x)+2e15+5xx(398x4x2+x3)log(x)43(3+x)2log(x)+e15+5xx(398x4x2+x3)log(x)(155+37x)559(137x+x2)2log(x)+17e15+5xx(398x4x2+x3)log(x)559(137x+x2)log(x))dx=5e15+5xx(398x4x2+x3)log(x)(66+41x)(137x+x2)log2(x)dx7267+5559e15+5xx(398x4x2+x3)log(x)(155+37x)(137x+x2)2log(x)dx+25507e15+5xx(398x4x2+x3)log(x)xlog2(x)dx10129e15+5xx(398x4x2+x3)log(x)(3+x)log2(x)dx+85559e15+5xx(398x4x2+x3)log(x)(137x+x2)log(x)dx+1043e15+5xx(398x4x2+x3)log(x)(3+x)2log(x)dx513e15+5xx(398x4x2+x3)log(x)x2log2(x)dx513e15+5xx(398x4x2+x3)log(x)x2log(x)dx=5(66e15+5xx(398x4x2+x3)log(x)(137x+x2)log2(x)+41e15+5xx(398x4x2+x3)log(x)x(137x+x2)log2(x))dx7267+5559(155e15+5xx(398x4x2+x3)log(x)(137x+x2)2log(x)+37e15+5xx(398x4x2+x3)log(x)x(137x+x2)2log(x))dx+25507e15+5xx(398x4x2+x3)log(x)xlog2(x)dx10129e15+5xx(398x4x2+x3)log(x)(3+x)log2(x)dx+85559(2ie15+5xx(398x4x2+x3)log(x)3(7+i32x)log(x)+2ie15+5xx(398x4x2+x3)log(x)3(7+i3+2x)log(x))dx+1043e15+5xx(398x4x2+x3)log(x)(3+x)2log(x)dx513e15+5xx(398x4x2+x3)log(x)x2log2(x)dx513e15+5xx(398x4x2+x3)log(x)x2log(x)dx=205e15+5xx(398x4x2+x3)log(x)x(137x+x2)log2(x)dx7267330e15+5xx(398x4x2+x3)log(x)(137x+x2)log2(x)dx7267+25507e15+5xx(398x4x2+x3)log(x)xlog2(x)dx10129e15+5xx(398x4x2+x3)log(x)(3+x)log2(x)dx+1043e15+5xx(398x4x2+x3)log(x)(3+x)2log(x)dx+185559e15+5xx(398x4x2+x3)log(x)x(137x+x2)2log(x)dx513e15+5xx(398x4x2+x3)log(x)x2log2(x)dx513e15+5xx(398x4x2+x3)log(x)x2log(x)dx775559e15+5xx(398x4x2+x3)log(x)(137x+x2)2log(x)dx+(170i)e15+5xx(398x4x2+x3)log(x)(7+i32x)log(x)dx5593+(170i)e15+5xx(398x4x2+x3)log(x)(7+i3+2x)log(x)dx5593=205((17i3)e15+5xx(398x4x2+x3)log(x)(7i3+2x)log2(x)+(1+7i3)e15+5xx(398x4x2+x3)log(x)(7+i3+2x)log2(x))dx7267330(2ie15+5xx(398x4x2+x3)log(x)3(7+i32x)log2(x)+2ie15+5xx(398x4x2+x3)log(x)3(7+i3+2x)log2(x))dx7267+25507e15+5xx(398x4x2+x3)log(x)xlog2(x)dx10129e15+5xx(398x4x2+x3)log(x)(3+x)log2(x)dx+1043e15+5xx(398x4x2+x3)log(x)(3+x)2log(x)dx+185559e15+5xx(398x4x2+x3)log(x)x(137x+x2)2log(x)dx513e15+5xx(398x4x2+x3)log(x)x2log2(x)dx513e15+5xx(398x4x2+x3)log(x)x2log(x)dx775559e15+5xx(398x4x2+x3)log(x)(137x+x2)2log(x)dx+(170i)e15+5xx(398x4x2+x3)log(x)(7+i32x)log(x)dx5593+(170i)e15+5xx(398x4x2+x3)log(x)(7+i3+2x)log(x)dx5593=25507e15+5xx(398x4x2+x3)log(x)xlog2(x)dx10129e15+5xx(398x4x2+x3)log(x)(3+x)log2(x)dx+1043e15+5xx(398x4x2+x3)log(x)(3+x)2log(x)dx+185559e15+5xx(398x4x2+x3)log(x)x(137x+x2)2log(x)dx513e15+5xx(398x4x2+x3)log(x)x2log2(x)dx513e15+5xx(398x4x2+x3)log(x)x2log(x)dx775559e15+5xx(398x4x2+x3)log(x)(137x+x2)2log(x)dx+(170i)e15+5xx(398x4x2+x3)log(x)(7+i32x)log(x)dx5593+(170i)e15+5xx(398x4x2+x3)log(x)(7+i3+2x)log(x)dx5593(220i3)e15+5xx(398x4x2+x3)log(x)(7+i32x)log2(x)dx7267(220i3)e15+5xx(398x4x2+x3)log(x)(7+i3+2x)log2(x)dx7267+(205(37i3))e15+5xx(398x4x2+x3)log(x)(7i3+2x)log2(x)dx21801+(205(3+7i3))e15+5xx(398x4x2+x3)log(x)(7+i3+2x)log2(x)dx21801

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 31, normalized size = 1.00 e5(3+x)x(398x4x2+x3)log(x)

Antiderivative was successfully verified.

[In]

Integrate[(E^((-15 + 5*x)/((39*x - 8*x^2 - 4*x^3 + x^4)*Log[x]))*(-585 + 315*x + 20*x^2 - 35*x^3 + 5*x^4 + (-5
85 + 240*x + 140*x^2 - 100*x^3 + 15*x^4)*Log[x]))/((1521*x^2 - 624*x^3 - 248*x^4 + 142*x^5 - 8*x^7 + x^8)*Log[
x]^2),x]

[Out]

-E^((5*(-3 + x))/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 31, normalized size = 1.00 e(5(x3)(x44x38x2+39x)log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^4-100*x^3+140*x^2+240*x-585)*log(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*
x^2+39*x)/log(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/log(x)^2,x, algorithm="fricas")

[Out]

-e^(5*(x - 3)/((x^4 - 4*x^3 - 8*x^2 + 39*x)*log(x)))

________________________________________________________________________________________

giac [B]  time = 0.55, size = 65, normalized size = 2.10 e(5xx4log(x)4x3log(x)8x2log(x)+39xlog(x)15x4log(x)4x3log(x)8x2log(x)+39xlog(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^4-100*x^3+140*x^2+240*x-585)*log(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*
x^2+39*x)/log(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/log(x)^2,x, algorithm="giac")

[Out]

-e^(5*x/(x^4*log(x) - 4*x^3*log(x) - 8*x^2*log(x) + 39*x*log(x)) - 15/(x^4*log(x) - 4*x^3*log(x) - 8*x^2*log(x
) + 39*x*log(x)))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 31, normalized size = 1.00




method result size



risch e5x15x(3+x)(x27x+13)ln(x) 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((15*x^4-100*x^3+140*x^2+240*x-585)*ln(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*x^2+39*
x)/ln(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

-exp(5*(x-3)/x/(3+x)/(x^2-7*x+13)/ln(x))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: RuntimeError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^4-100*x^3+140*x^2+240*x-585)*log(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*
x^2+39*x)/log(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/log(x)^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: In function CAR, the value of the first argument is  0which is not
 of the expected type LIST

________________________________________________________________________________________

mupad [B]  time = 1.78, size = 62, normalized size = 2.00 e158x2ln(x)+4x3ln(x)x4ln(x)39xln(x)e539ln(x)4x2ln(x)+x3ln(x)8xln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((5*x - 15)/(log(x)*(39*x - 8*x^2 - 4*x^3 + x^4)))*(315*x + log(x)*(240*x + 140*x^2 - 100*x^3 + 15*x^4
 - 585) + 20*x^2 - 35*x^3 + 5*x^4 - 585))/(log(x)^2*(1521*x^2 - 624*x^3 - 248*x^4 + 142*x^5 - 8*x^7 + x^8)),x)

[Out]

-exp(15/(8*x^2*log(x) + 4*x^3*log(x) - x^4*log(x) - 39*x*log(x)))*exp(5/(39*log(x) - 4*x^2*log(x) + x^3*log(x)
 - 8*x*log(x)))

________________________________________________________________________________________

sympy [A]  time = 0.85, size = 27, normalized size = 0.87 e5x15(x44x38x2+39x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x**4-100*x**3+140*x**2+240*x-585)*ln(x)+5*x**4-35*x**3+20*x**2+315*x-585)*exp((5*x-15)/(x**4-4*
x**3-8*x**2+39*x)/ln(x))/(x**8-8*x**7+142*x**5-248*x**4-624*x**3+1521*x**2)/ln(x)**2,x)

[Out]

-exp((5*x - 15)/((x**4 - 4*x**3 - 8*x**2 + 39*x)*log(x)))

________________________________________________________________________________________