3.26.70
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 13.34, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((-15 + 5*x)/((39*x - 8*x^2 - 4*x^3 + x^4)*Log[x]))*(-585 + 315*x + 20*x^2 - 35*x^3 + 5*x^4 + (-585 + 2
40*x + 140*x^2 - 100*x^3 + 15*x^4)*Log[x]))/((1521*x^2 - 624*x^3 - 248*x^4 + 142*x^5 - 8*x^7 + x^8)*Log[x]^2),
x]
[Out]
((-220*I)/7267)*Sqrt[3]*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((7 + I*Sqrt[3] - 2*x)*
Log[x]^2), x] - (5*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/(x^2*Log[x]^2), x])/13 + (25
*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/(x*Log[x]^2), x])/507 - (10*Defer[Int][E^((-15
+ 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((3 + x)*Log[x]^2), x])/129 + (205*(3 - (7*I)*Sqrt[3])*Defer[Int]
[E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 - I*Sqrt[3] + 2*x)*Log[x]^2), x])/21801 - ((220*I)/7
267)*Sqrt[3]*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 + I*Sqrt[3] + 2*x)*Log[x]^2),
x] + (205*(3 + (7*I)*Sqrt[3])*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 + I*Sqrt[3]
+ 2*x)*Log[x]^2), x])/21801 + (((170*I)/559)*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/(
(7 + I*Sqrt[3] - 2*x)*Log[x]), x])/Sqrt[3] - (5*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))
/(x^2*Log[x]), x])/13 + (10*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((3 + x)^2*Log[x]),
x])/43 + (((170*I)/559)*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((-7 + I*Sqrt[3] + 2*x
)*Log[x]), x])/Sqrt[3] - (775*Defer[Int][E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))/((13 - 7*x + x^2)
^2*Log[x]), x])/559 + (185*Defer[Int][(E^((-15 + 5*x)/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))*x)/((13 - 7*x + x^2
)^2*Log[x]), x])/559
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^((-15 + 5*x)/((39*x - 8*x^2 - 4*x^3 + x^4)*Log[x]))*(-585 + 315*x + 20*x^2 - 35*x^3 + 5*x^4 + (-5
85 + 240*x + 140*x^2 - 100*x^3 + 15*x^4)*Log[x]))/((1521*x^2 - 624*x^3 - 248*x^4 + 142*x^5 - 8*x^7 + x^8)*Log[
x]^2),x]
[Out]
-E^((5*(-3 + x))/(x*(39 - 8*x - 4*x^2 + x^3)*Log[x]))
________________________________________________________________________________________
fricas [A] time = 0.85, size = 31, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^4-100*x^3+140*x^2+240*x-585)*log(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*
x^2+39*x)/log(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/log(x)^2,x, algorithm="fricas")
[Out]
-e^(5*(x - 3)/((x^4 - 4*x^3 - 8*x^2 + 39*x)*log(x)))
________________________________________________________________________________________
giac [B] time = 0.55, size = 65, normalized size = 2.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^4-100*x^3+140*x^2+240*x-585)*log(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*
x^2+39*x)/log(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/log(x)^2,x, algorithm="giac")
[Out]
-e^(5*x/(x^4*log(x) - 4*x^3*log(x) - 8*x^2*log(x) + 39*x*log(x)) - 15/(x^4*log(x) - 4*x^3*log(x) - 8*x^2*log(x
) + 39*x*log(x)))
________________________________________________________________________________________
maple [A] time = 0.03, size = 31, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((15*x^4-100*x^3+140*x^2+240*x-585)*ln(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*x^2+39*
x)/ln(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/ln(x)^2,x,method=_RETURNVERBOSE)
[Out]
-exp(5*(x-3)/x/(3+x)/(x^2-7*x+13)/ln(x))
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^4-100*x^3+140*x^2+240*x-585)*log(x)+5*x^4-35*x^3+20*x^2+315*x-585)*exp((5*x-15)/(x^4-4*x^3-8*
x^2+39*x)/log(x))/(x^8-8*x^7+142*x^5-248*x^4-624*x^3+1521*x^2)/log(x)^2,x, algorithm="maxima")
[Out]
Exception raised: RuntimeError >> ECL says: In function CAR, the value of the first argument is 0which is not
of the expected type LIST
________________________________________________________________________________________
mupad [B] time = 1.78, size = 62, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp((5*x - 15)/(log(x)*(39*x - 8*x^2 - 4*x^3 + x^4)))*(315*x + log(x)*(240*x + 140*x^2 - 100*x^3 + 15*x^4
- 585) + 20*x^2 - 35*x^3 + 5*x^4 - 585))/(log(x)^2*(1521*x^2 - 624*x^3 - 248*x^4 + 142*x^5 - 8*x^7 + x^8)),x)
[Out]
-exp(15/(8*x^2*log(x) + 4*x^3*log(x) - x^4*log(x) - 39*x*log(x)))*exp(5/(39*log(x) - 4*x^2*log(x) + x^3*log(x)
- 8*x*log(x)))
________________________________________________________________________________________
sympy [A] time = 0.85, size = 27, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x**4-100*x**3+140*x**2+240*x-585)*ln(x)+5*x**4-35*x**3+20*x**2+315*x-585)*exp((5*x-15)/(x**4-4*
x**3-8*x**2+39*x)/ln(x))/(x**8-8*x**7+142*x**5-248*x**4-624*x**3+1521*x**2)/ln(x)**2,x)
[Out]
-exp((5*x - 15)/((x**4 - 4*x**3 - 8*x**2 + 39*x)*log(x)))
________________________________________________________________________________________