Optimal. Leaf size=19 \[ \left (-5+10 x \left (5+e^x+\frac {4}{1+x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.58, antiderivative size = 72, normalized size of antiderivative = 3.79, number of steps used = 29, number of rules used = 11, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {6688, 12, 6742, 37, 43, 2196, 2176, 2194, 2199, 2177, 2178} \begin {gather*} 1000 e^x x^2+100 e^{2 x} x^2+\frac {7150 x^2}{(x+1)^2}+2500 x^2+700 e^x x+3500 x-800 e^x+\frac {800 e^x}{x+1}+\frac {15500}{x+1}-\frac {5550}{(x+1)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 37
Rule 43
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2196
Rule 2199
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100 \left (-9+143 x+255 x^2+185 x^3+50 x^4+2 e^{2 x} x (1+x)^4+e^x \left (-1+32 x+96 x^2+110 x^3+57 x^4+10 x^5\right )\right )}{(1+x)^3} \, dx\\ &=100 \int \frac {-9+143 x+255 x^2+185 x^3+50 x^4+2 e^{2 x} x (1+x)^4+e^x \left (-1+32 x+96 x^2+110 x^3+57 x^4+10 x^5\right )}{(1+x)^3} \, dx\\ &=100 \int \left (-\frac {9}{(1+x)^3}+\frac {143 x}{(1+x)^3}+\frac {255 x^2}{(1+x)^3}+\frac {185 x^3}{(1+x)^3}+\frac {50 x^4}{(1+x)^3}+2 e^{2 x} x (1+x)+\frac {e^x \left (-1+33 x+63 x^2+47 x^3+10 x^4\right )}{(1+x)^2}\right ) \, dx\\ &=\frac {450}{(1+x)^2}+100 \int \frac {e^x \left (-1+33 x+63 x^2+47 x^3+10 x^4\right )}{(1+x)^2} \, dx+200 \int e^{2 x} x (1+x) \, dx+5000 \int \frac {x^4}{(1+x)^3} \, dx+14300 \int \frac {x}{(1+x)^3} \, dx+18500 \int \frac {x^3}{(1+x)^3} \, dx+25500 \int \frac {x^2}{(1+x)^3} \, dx\\ &=\frac {450}{(1+x)^2}+\frac {7150 x^2}{(1+x)^2}+100 \int \left (-e^x+27 e^x x+10 e^x x^2-\frac {8 e^x}{(1+x)^2}+\frac {8 e^x}{1+x}\right ) \, dx+200 \int \left (e^{2 x} x+e^{2 x} x^2\right ) \, dx+5000 \int \left (-3+x+\frac {1}{(1+x)^3}-\frac {4}{(1+x)^2}+\frac {6}{1+x}\right ) \, dx+18500 \int \left (1-\frac {1}{(1+x)^3}+\frac {3}{(1+x)^2}-\frac {3}{1+x}\right ) \, dx+25500 \int \left (\frac {1}{(1+x)^3}-\frac {2}{(1+x)^2}+\frac {1}{1+x}\right ) \, dx\\ &=3500 x+2500 x^2-\frac {5550}{(1+x)^2}+\frac {7150 x^2}{(1+x)^2}+\frac {15500}{1+x}-100 \int e^x \, dx+200 \int e^{2 x} x \, dx+200 \int e^{2 x} x^2 \, dx-800 \int \frac {e^x}{(1+x)^2} \, dx+800 \int \frac {e^x}{1+x} \, dx+1000 \int e^x x^2 \, dx+2700 \int e^x x \, dx\\ &=-100 e^x+3500 x+2700 e^x x+100 e^{2 x} x+2500 x^2+1000 e^x x^2+100 e^{2 x} x^2-\frac {5550}{(1+x)^2}+\frac {7150 x^2}{(1+x)^2}+\frac {15500}{1+x}+\frac {800 e^x}{1+x}+\frac {800 \text {Ei}(1+x)}{e}-100 \int e^{2 x} \, dx-200 \int e^{2 x} x \, dx-800 \int \frac {e^x}{1+x} \, dx-2000 \int e^x x \, dx-2700 \int e^x \, dx\\ &=-2800 e^x-50 e^{2 x}+3500 x+700 e^x x+2500 x^2+1000 e^x x^2+100 e^{2 x} x^2-\frac {5550}{(1+x)^2}+\frac {7150 x^2}{(1+x)^2}+\frac {15500}{1+x}+\frac {800 e^x}{1+x}+100 \int e^{2 x} \, dx+2000 \int e^x \, dx\\ &=-800 e^x+3500 x+700 e^x x+2500 x^2+1000 e^x x^2+100 e^{2 x} x^2-\frac {5550}{(1+x)^2}+\frac {7150 x^2}{(1+x)^2}+\frac {15500}{1+x}+\frac {800 e^x}{1+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.25, size = 52, normalized size = 2.74 \begin {gather*} 100 \left (35 x+25 x^2+e^{2 x} x^2+\frac {4 (7+3 x)}{(1+x)^2}+\frac {e^x x \left (-1+17 x+10 x^2\right )}{1+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.98, size = 71, normalized size = 3.74 \begin {gather*} \frac {100 \, {\left (25 \, x^{4} + 85 \, x^{3} + 95 \, x^{2} + {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} + {\left (10 \, x^{4} + 27 \, x^{3} + 16 \, x^{2} - x\right )} e^{x} + 47 \, x + 28\right )}}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 83, normalized size = 4.37 \begin {gather*} \frac {100 \, {\left (x^{4} e^{\left (2 \, x\right )} + 10 \, x^{4} e^{x} + 25 \, x^{4} + 2 \, x^{3} e^{\left (2 \, x\right )} + 27 \, x^{3} e^{x} + 85 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + 16 \, x^{2} e^{x} + 95 \, x^{2} - x e^{x} + 47 \, x + 28\right )}}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 55, normalized size = 2.89
method | result | size |
risch | \(2500 x^{2}+3500 x +\frac {1200 x +2800}{x^{2}+2 x +1}+100 \,{\mathrm e}^{2 x} x^{2}+\frac {100 x \left (10 x^{2}+17 x -1\right ) {\mathrm e}^{x}}{x +1}\) | \(55\) |
default | \(\frac {1600}{\left (x +1\right )^{2}}+\frac {1200}{x +1}+3500 x +2500 x^{2}+\frac {800 \,{\mathrm e}^{x}}{x +1}+1000 \,{\mathrm e}^{x} x^{2}+700 \,{\mathrm e}^{x} x -800 \,{\mathrm e}^{x}+100 \,{\mathrm e}^{2 x} x^{2}\) | \(58\) |
norman | \(\frac {-14300 x +8500 x^{3}+2500 x^{4}-100 \,{\mathrm e}^{x} x +1600 \,{\mathrm e}^{x} x^{2}+2700 \,{\mathrm e}^{x} x^{3}+1000 \,{\mathrm e}^{x} x^{4}+100 \,{\mathrm e}^{2 x} x^{2}+200 \,{\mathrm e}^{2 x} x^{3}+100 \,{\mathrm e}^{2 x} x^{4}-6700}{\left (x +1\right )^{2}}\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2500 \, x^{2} + 3500 \, x + \frac {2500 \, {\left (8 \, x + 7\right )}}{x^{2} + 2 \, x + 1} - \frac {9250 \, {\left (6 \, x + 5\right )}}{x^{2} + 2 \, x + 1} + \frac {12750 \, {\left (4 \, x + 3\right )}}{x^{2} + 2 \, x + 1} - \frac {7150 \, {\left (2 \, x + 1\right )}}{x^{2} + 2 \, x + 1} + \frac {100 \, {\left ({\left (x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} + {\left (10 \, x^{3} + 17 \, x^{2} - x\right )} e^{x}\right )}}{x + 1} + \frac {100 \, e^{\left (-1\right )} E_{3}\left (-x - 1\right )}{{\left (x + 1\right )}^{2}} + \frac {450}{x^{2} + 2 \, x + 1} + 100 \, \int \frac {e^{x}}{x^{3} + 3 \, x^{2} + 3 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.57, size = 49, normalized size = 2.58 \begin {gather*} x^2\,\left (100\,{\mathrm {e}}^{2\,x}+1000\,{\mathrm {e}}^x+2500\right )-800\,{\mathrm {e}}^x+x\,\left (700\,{\mathrm {e}}^x+3500\right )+\frac {800\,{\mathrm {e}}^x+x\,\left (800\,{\mathrm {e}}^x+1200\right )+2800}{{\left (x+1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 56, normalized size = 2.95 \begin {gather*} 2500 x^{2} + 3500 x + \frac {1200 x + 2800}{x^{2} + 2 x + 1} + \frac {\left (100 x^{3} + 100 x^{2}\right ) e^{2 x} + \left (1000 x^{3} + 1700 x^{2} - 100 x\right ) e^{x}}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________