Optimal. Leaf size=24 \[ -e^{-1+\left (\frac {e^3}{2}-x\right )^2+3 x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2244, 2236} \begin {gather*} x-e^{x^2+\left (3-e^3\right ) x+\frac {1}{4} \left (e^6-4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2236
Rule 2244
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int e^{\frac {1}{4} \left (-4+e^6+12 x-4 e^3 x+4 x^2\right )} \left (-3+e^3-2 x\right ) \, dx\\ &=x+\int e^{\frac {1}{4} \left (-4+e^6\right )+\left (3-e^3\right ) x+x^2} \left (-3+e^3-2 x\right ) \, dx\\ &=-e^{\frac {1}{4} \left (-4+e^6\right )+\left (3-e^3\right ) x+x^2}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 1.08 \begin {gather*} -e^{-1+\frac {e^6}{4}-\left (-3+e^3\right ) x+x^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 22, normalized size = 0.92 \begin {gather*} x - e^{\left (x^{2} - x e^{3} + 3 \, x + \frac {1}{4} \, e^{6} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 22, normalized size = 0.92 \begin {gather*} x - e^{\left (x^{2} - x e^{3} + 3 \, x + \frac {1}{4} \, e^{6} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.96
method | result | size |
risch | \(x -{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}-x \,{\mathrm e}^{3}+x^{2}+3 x -1}\) | \(23\) |
norman | \(x -{\mathrm e}^{\frac {{\mathrm e}^{6}}{4}-x \,{\mathrm e}^{3}+x^{2}+3 x -1}\) | \(25\) |
default | \(x -\frac {i \sqrt {\pi }\, {\mathrm e}^{\frac {{\mathrm e}^{6}}{4}+2-\frac {\left (3-{\mathrm e}^{3}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (3-{\mathrm e}^{3}\right )}{2}\right )}{2}+\frac {3 i \sqrt {\pi }\, {\mathrm e}^{\frac {{\mathrm e}^{6}}{4}-1-\frac {\left (3-{\mathrm e}^{3}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (3-{\mathrm e}^{3}\right )}{2}\right )}{2}-{\mathrm e}^{x^{2}+\left (3-{\mathrm e}^{3}\right ) x +\frac {{\mathrm e}^{6}}{4}-1}-\frac {i \left (3-{\mathrm e}^{3}\right ) \sqrt {\pi }\, {\mathrm e}^{\frac {{\mathrm e}^{6}}{4}-1-\frac {\left (3-{\mathrm e}^{3}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (3-{\mathrm e}^{3}\right )}{2}\right )}{2}\) | \(143\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 22, normalized size = 0.92 \begin {gather*} x - e^{\left (x^{2} - x e^{3} + 3 \, x + \frac {1}{4} \, e^{6} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 25, normalized size = 1.04 \begin {gather*} x-{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^3}\,{\left ({\mathrm {e}}^{{\mathrm {e}}^6}\right )}^{1/4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 0.83 \begin {gather*} x - e^{x^{2} - x e^{3} + 3 x - 1 + \frac {e^{6}}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________