Optimal. Leaf size=32 \[ \frac {2}{\left (e^{2 e^{4+x+(x+\log (x))^2}}+e^{-2+3 e^x}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 14.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2+3 e^x} \left (-2-6 e^x x\right )+e^{2 e^{4+x+x^2+2 x \log (x)+\log ^2(x)}} \left (-2+e^{4+x+x^2+2 x \log (x)+\log ^2(x)} \left (-12 x-8 x^2+(-8-8 x) \log (x)\right )\right )}{e^{4 e^{4+x+x^2+2 x \log (x)+\log ^2(x)}} x^2+e^{-4+6 e^x} x^2+2 \exp \left (-2+3 e^x+2 e^{4+x+x^2+2 x \log (x)+\log ^2(x)}\right ) x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (e^{-2+3 e^x} \left (-2-6 e^x x\right )+e^{2 e^{4+x+x^2+2 x \log (x)+\log ^2(x)}} \left (-2+e^{4+x+x^2+2 x \log (x)+\log ^2(x)} \left (-12 x-8 x^2+(-8-8 x) \log (x)\right )\right )\right )}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2 x^2} \, dx\\ &=e^4 \int \frac {e^{-2+3 e^x} \left (-2-6 e^x x\right )+e^{2 e^{4+x+x^2+2 x \log (x)+\log ^2(x)}} \left (-2+e^{4+x+x^2+2 x \log (x)+\log ^2(x)} \left (-12 x-8 x^2+(-8-8 x) \log (x)\right )\right )}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2 x^2} \, dx\\ &=e^4 \int \left (-\frac {2 \left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}+3 e^{3 e^x+x} x\right )}{e^2 \left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2 x^2}-\frac {4 \exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-2+2 x} \left (3 x+2 x^2+2 \log (x)+2 x \log (x)\right )}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2}\right ) \, dx\\ &=-\left (\left (2 e^2\right ) \int \frac {e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}+3 e^{3 e^x+x} x}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2 x^2} \, dx\right )-\left (4 e^4\right ) \int \frac {\exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-2+2 x} \left (3 x+2 x^2+2 \log (x)+2 x \log (x)\right )}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2} \, dx\\ &=-\left (\left (2 e^2\right ) \int \left (\frac {1}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right ) x^2}+\frac {3 e^{3 e^x+x}}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2 x}\right ) \, dx\right )-\left (4 e^4\right ) \int \left (\frac {2 \exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{2 x}}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2}+\frac {3 \exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-1+2 x}}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2}+\frac {2 \exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-2+2 x} \log (x)}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2}+\frac {2 \exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-1+2 x} \log (x)}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2}\right ) \, dx\\ &=-\left (\left (2 e^2\right ) \int \frac {1}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right ) x^2} \, dx\right )-\left (6 e^2\right ) \int \frac {e^{3 e^x+x}}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2 x} \, dx-\left (8 e^4\right ) \int \frac {\exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{2 x}}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2} \, dx-\left (8 e^4\right ) \int \frac {\exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-2+2 x} \log (x)}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2} \, dx-\left (8 e^4\right ) \int \frac {\exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-1+2 x} \log (x)}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2} \, dx-\left (12 e^4\right ) \int \frac {\exp \left (4+x+x^2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}+\log ^2(x)\right ) x^{-1+2 x}}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 41, normalized size = 1.28 \begin {gather*} \frac {2 e^2}{\left (e^{3 e^x}+e^{2+2 e^{4+x+x^2+\log ^2(x)} x^{2 x}}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 48, normalized size = 1.50 \begin {gather*} \frac {2 \, e^{\left (3 \, e^{x} - 2\right )}}{x e^{\left (2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 3 \, e^{x} - 2\right )} + x e^{\left (6 \, e^{x} - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.50, size = 394, normalized size = 12.31 \begin {gather*} \frac {2 \, {\left (4 \, x^{2} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 10\right )} + 4 \, x e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 10\right )} \log \relax (x) + 6 \, x e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 10\right )} - 3 \, x e^{\left (x + 6\right )} + 4 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 10\right )} \log \relax (x)\right )}}{4 \, x^{3} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 10\right )} + 4 \, x^{3} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 3 \, e^{x} + 8\right )} + 4 \, x^{2} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 10\right )} \log \relax (x) + 4 \, x^{2} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 3 \, e^{x} + 8\right )} \log \relax (x) + 6 \, x^{2} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 10\right )} + 6 \, x^{2} e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 3 \, e^{x} + 8\right )} - 3 \, x^{2} e^{\left (x + 2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 6\right )} - 3 \, x^{2} e^{\left (x + 3 \, e^{x} + 4\right )} + 4 \, x e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 10\right )} \log \relax (x) + 4 \, x e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 3 \, e^{x} + 8\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 35, normalized size = 1.09
method | result | size |
risch | \(\frac {2}{x \left ({\mathrm e}^{2 x^{2 x} {\mathrm e}^{\ln \relax (x )^{2}+4+x^{2}+x}}+{\mathrm e}^{3 \,{\mathrm e}^{x}-2}\right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 37, normalized size = 1.16 \begin {gather*} \frac {2 \, e^{2}}{x e^{\left (3 \, e^{x}\right )} + x e^{\left (2 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x + 4\right )} + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.78, size = 259, normalized size = 8.09 \begin {gather*} \frac {x\,\left (12\,x^{2\,x}\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}-6\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x-2}+8\,x^{2\,x}\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}\,\ln \relax (x)\right )+8\,x^{2\,x}\,x^2\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}+8\,x^{2\,x}\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}\,\ln \relax (x)}{\left ({\mathrm {e}}^{3\,{\mathrm {e}}^x-2}+{\mathrm {e}}^{2\,x^{2\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^4\,{\mathrm {e}}^{{\ln \relax (x)}^2}\,{\mathrm {e}}^x}\right )\,\left (6\,x^{2\,x}\,x^2\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}-3\,x^2\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x-2}+4\,x^{2\,x}\,x^3\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}+4\,x^{2\,x}\,x^2\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}\,\ln \relax (x)+4\,x\,x^{2\,x}\,{\mathrm {e}}^{x+3\,{\mathrm {e}}^x+{\ln \relax (x)}^2+x^2+2}\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 15.23, size = 36, normalized size = 1.12 \begin {gather*} \frac {2}{x e^{3 e^{x} - 2} + x e^{2 e^{x^{2} + 2 x \log {\relax (x )} + x + \log {\relax (x )}^{2} + 4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________