Optimal. Leaf size=24 \[ \log ^2\left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 21.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (37500-15036 x-2484 x^2+4 x^3+\left (30000-15048 x+24 x^2\right ) \log (625-x)\right ) \log \left (\frac {-30 x^2+10 x^3}{5+x+4 \log (625-x)}\right )}{9375 x-1265 x^2-623 x^3+x^4+\left (7500 x-2512 x^2+4 x^3\right ) \log (625-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (37500-15036 x-2484 x^2+4 x^3+\left (30000-15048 x+24 x^2\right ) \log (625-x)\right ) \log \left (\frac {x^2 (-30+10 x)}{5+x+4 \log (625-x)}\right )}{x \left (1875-628 x+x^2\right ) (5+x+4 \log (625-x))} \, dx\\ &=\int \left (\frac {2 \left (9375-3759 x-621 x^2+x^3+7500 \log (625-x)-3762 x \log (625-x)+6 x^2 \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{194375 (-625+x) (5+x+4 \log (625-x))}-\frac {2 \left (9375-3759 x-621 x^2+x^3+7500 \log (625-x)-3762 x \log (625-x)+6 x^2 \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{933 (-3+x) (5+x+4 \log (625-x))}+\frac {4 \left (9375-3759 x-621 x^2+x^3+7500 \log (625-x)-3762 x \log (625-x)+6 x^2 \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{1875 x (5+x+4 \log (625-x))}\right ) \, dx\\ &=\frac {2 \int \frac {\left (9375-3759 x-621 x^2+x^3+7500 \log (625-x)-3762 x \log (625-x)+6 x^2 \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))} \, dx}{194375}+\frac {4 \int \frac {\left (9375-3759 x-621 x^2+x^3+7500 \log (625-x)-3762 x \log (625-x)+6 x^2 \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{x (5+x+4 \log (625-x))} \, dx}{1875}-\frac {2}{933} \int \frac {\left (9375-3759 x-621 x^2+x^3+7500 \log (625-x)-3762 x \log (625-x)+6 x^2 \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))} \, dx\\ &=\frac {2 \int \left (\frac {9375 \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}-\frac {3759 x \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}-\frac {621 x^2 \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}+\frac {x^3 \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}+\frac {7500 \log (625-x) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}-\frac {3762 x \log (625-x) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}+\frac {6 x^2 \log (625-x) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-625+x) (5+x+4 \log (625-x))}\right ) \, dx}{194375}+\frac {4 \int \frac {\left (9375-3759 x-621 x^2+x^3+6 \left (1250-627 x+x^2\right ) \log (625-x)\right ) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{x (5+x+4 \log (625-x))} \, dx}{1875}-\frac {2}{933} \int \left (\frac {9375 \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}-\frac {3759 x \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}-\frac {621 x^2 \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}+\frac {x^3 \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}+\frac {7500 \log (625-x) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}-\frac {3762 x \log (625-x) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}+\frac {6 x^2 \log (625-x) \log \left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right )}{(-3+x) (5+x+4 \log (625-x))}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 24, normalized size = 1.00 \begin {gather*} \log ^2\left (\frac {10 (-3+x) x^2}{5+x+4 \log (625-x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 27, normalized size = 1.12 \begin {gather*} \log \left (\frac {10 \, {\left (x^{3} - 3 \, x^{2}\right )}}{x + 4 \, \log \left (-x + 625\right ) + 5}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.53, size = 129, normalized size = 5.38 \begin {gather*} 2 \, {\left (\log \left (x - 3\right ) + 2 \, \log \relax (x) - \log \left (-x - 4 \, \log \left (-x + 625\right ) - 5\right )\right )} \log \left (10 \, x^{3} - 30 \, x^{2}\right ) - 2 \, {\left (\log \left (x - 3\right ) + 2 \, \log \relax (x)\right )} \log \left (x + 4 \, \log \left (-x + 625\right ) + 5\right ) + \log \left (x + 4 \, \log \left (-x + 625\right ) + 5\right )^{2} - 2 \, {\left (\log \left (x - 3\right ) + 2 \, \log \relax (x)\right )} \log \left (x - 3\right ) + \log \left (x - 3\right )^{2} - 4 \, \log \relax (x)^{2} + 2 \, {\left (\log \left (x - 3\right ) + 2 \, \log \relax (x)\right )} \log \left (-x - 4 \, \log \left (-x + 625\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.84, size = 1445, normalized size = 60.21
method | result | size |
risch | \(4 \ln \relax (x )^{2}-i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{3}-i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{3}-2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{3}-2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{3}-i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{3}+i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{3}+2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (\frac {i}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )-2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )-2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )-i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )-i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )+i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )+\ln \left (x -3\right )^{2}+\ln \left (4 \ln \left (-x +625\right )+5+x \right )^{2}-2 i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}-i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}-i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (\frac {i}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}-i \pi \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}-i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \ln \left (x -3\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+2 i \pi \ln \left (-x \right ) \mathrm {csgn}\left (\frac {i}{4 \ln \left (-x +625\right )+5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{4 \ln \left (-x +625\right )+5+x}\right )^{2}+2 \ln \relax (2) \ln \left (x -3\right )+4 \ln \relax (2) \ln \left (-x \right )+2 \ln \left (x -3\right ) \ln \relax (5)+4 \ln \left (-x \right ) \ln \relax (5)+4 \ln \relax (x ) \ln \left (x -3\right )+\left (-4 \ln \relax (x )-2 \ln \left (x -3\right )\right ) \ln \left (4 \ln \left (-x +625\right )+5+x \right )-2 \ln \relax (2) \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right )-2 \ln \left (\ln \left (-x +625\right )+\frac {5}{4}+\frac {x}{4}\right ) \ln \relax (5)\) | \(1445\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 125, normalized size = 5.21 \begin {gather*} 2 \, {\left (2 \, \log \relax (2) + \log \left (x - 3\right ) + 2 \, \log \relax (x)\right )} \log \left (x + 4 \, \log \left (-x + 625\right ) + 5\right ) - \log \left (x + 4 \, \log \left (-x + 625\right ) + 5\right )^{2} - 4 \, {\left (\log \relax (2) + \log \relax (x)\right )} \log \left (x - 3\right ) - \log \left (x - 3\right )^{2} - 8 \, \log \relax (2) \log \relax (x) - 4 \, \log \relax (x)^{2} + 2 \, {\left (\log \left (x - 3\right ) + 2 \, \log \relax (x) - \log \left (\frac {1}{4} \, x + \log \left (-x + 625\right ) + \frac {5}{4}\right )\right )} \log \left (\frac {10 \, {\left (x^{3} - 3 \, x^{2}\right )}}{x + 4 \, \log \left (-x + 625\right ) + 5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.70, size = 29, normalized size = 1.21 \begin {gather*} {\ln \left (-\frac {30\,x^2-10\,x^3}{x+4\,\ln \left (625-x\right )+5}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 22, normalized size = 0.92 \begin {gather*} \log {\left (\frac {10 x^{3} - 30 x^{2}}{x + 4 \log {\left (625 - x \right )} + 5} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________