Optimal. Leaf size=28 \[ \frac {x}{x^2+x \left (e^x+3 \left (-1+e^{\frac {x^2}{2}}\right ) x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 21, normalized size of antiderivative = 0.75, number of steps used = 2, number of rules used = 2, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 6686} \begin {gather*} \frac {1}{3 e^{\frac {x^2}{2}} x-2 x+e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-e^x-3 e^{\frac {x^2}{2}} \left (1+x^2\right )}{\left (e^x-2 x+3 e^{\frac {x^2}{2}} x\right )^2} \, dx\\ &=\frac {1}{e^x-2 x+3 e^{\frac {x^2}{2}} x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{e^x-2 x+3 e^{\frac {x^2}{2}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 17, normalized size = 0.61 \begin {gather*} \frac {1}{3 \, x e^{\left (\frac {1}{2} \, x^{2}\right )} - 2 \, x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.09, size = 396, normalized size = 14.14 \begin {gather*} \frac {9 \, x^{3} e^{\left (\frac {3}{2} \, x^{2}\right )} - 6 \, x^{3} e^{\left (x^{2}\right )} - 9 \, x^{2} e^{\left (\frac {3}{2} \, x^{2}\right )} - 4 \, x^{2} e^{\left (\frac {1}{2} \, x^{2}\right )} + 3 \, x^{2} e^{\left (x^{2} + x\right )} + 12 \, x^{2} e^{\left (x^{2}\right )} + 9 \, x e^{\left (\frac {3}{2} \, x^{2}\right )} + 4 \, x e^{\left (\frac {1}{2} \, x^{2}\right )} - 3 \, x e^{\left (x^{2} + x\right )} - 12 \, x e^{\left (x^{2}\right )} + 2 \, x e^{\left (\frac {1}{2} \, x^{2} + x\right )} + 3 \, e^{\left (x^{2} + x\right )} - 2 \, e^{\left (\frac {1}{2} \, x^{2} + x\right )}}{27 \, x^{4} e^{\left (2 \, x^{2}\right )} - 36 \, x^{4} e^{\left (\frac {3}{2} \, x^{2}\right )} + 12 \, x^{4} e^{\left (x^{2}\right )} - 27 \, x^{3} e^{\left (2 \, x^{2}\right )} + 54 \, x^{3} e^{\left (\frac {3}{2} \, x^{2}\right )} + 8 \, x^{3} e^{\left (\frac {1}{2} \, x^{2}\right )} + 18 \, x^{3} e^{\left (\frac {3}{2} \, x^{2} + x\right )} - 12 \, x^{3} e^{\left (x^{2} + x\right )} - 36 \, x^{3} e^{\left (x^{2}\right )} + 27 \, x^{2} e^{\left (2 \, x^{2}\right )} - 54 \, x^{2} e^{\left (\frac {3}{2} \, x^{2}\right )} - 8 \, x^{2} e^{\left (\frac {1}{2} \, x^{2}\right )} - 18 \, x^{2} e^{\left (\frac {3}{2} \, x^{2} + x\right )} + 3 \, x^{2} e^{\left (x^{2} + 2 \, x\right )} + 24 \, x^{2} e^{\left (x^{2} + x\right )} + 36 \, x^{2} e^{\left (x^{2}\right )} - 8 \, x^{2} e^{\left (\frac {1}{2} \, x^{2} + x\right )} + 18 \, x e^{\left (\frac {3}{2} \, x^{2} + x\right )} - 3 \, x e^{\left (x^{2} + 2 \, x\right )} - 24 \, x e^{\left (x^{2} + x\right )} + 2 \, x e^{\left (\frac {1}{2} \, x^{2} + 2 \, x\right )} + 8 \, x e^{\left (\frac {1}{2} \, x^{2} + x\right )} + 3 \, e^{\left (x^{2} + 2 \, x\right )} - 2 \, e^{\left (\frac {1}{2} \, x^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.64
method | result | size |
risch | \(\frac {1}{3 x \,{\mathrm e}^{\frac {x^{2}}{2}}+{\mathrm e}^{x}-2 x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 17, normalized size = 0.61 \begin {gather*} \frac {1}{3 \, x e^{\left (\frac {1}{2} \, x^{2}\right )} - 2 \, x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.60, size = 17, normalized size = 0.61 \begin {gather*} \frac {1}{{\mathrm {e}}^x-2\,x+3\,x\,{\mathrm {e}}^{\frac {x^2}{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.61 \begin {gather*} \frac {1}{3 x e^{\frac {x^{2}}{2}} - 2 x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________