Optimal. Leaf size=25 \[ \frac {e^{\frac {1}{5}+e^2+e^{2 x}+x+x^4}}{-1+\log (x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.74, antiderivative size = 95, normalized size of antiderivative = 3.80, number of steps used = 1, number of rules used = 1, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {2288} \begin {gather*} -\frac {e^{\frac {1}{5} \left (5 x^4+5 x+5 e^{2 x}+5 e^2+1\right )} \left (4 x^4-\left (4 x^4+2 e^{2 x} x+x\right ) \log (x)+2 e^{2 x} x+x\right )}{\left (4 x^3+2 e^{2 x}+1\right ) \left (x+x \log ^2(x)-2 x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{\frac {1}{5} \left (1+5 e^2+5 e^{2 x}+5 x+5 x^4\right )} \left (x+2 e^{2 x} x+4 x^4-\left (x+2 e^{2 x} x+4 x^4\right ) \log (x)\right )}{\left (1+2 e^{2 x}+4 x^3\right ) \left (x-2 x \log (x)+x \log ^2(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 25, normalized size = 1.00 \begin {gather*} \frac {e^{\frac {1}{5}+e^2+e^{2 x}+x+x^4}}{-1+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 20, normalized size = 0.80 \begin {gather*} \frac {e^{\left (x^{4} + x + e^{2} + e^{\left (2 \, x\right )} + \frac {1}{5}\right )}}{\log \relax (x) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (4 \, x^{4} + 2 \, x e^{\left (2 \, x\right )} - {\left (4 \, x^{4} + 2 \, x e^{\left (2 \, x\right )} + x\right )} \log \relax (x) + x + 1\right )} e^{\left (x^{4} + x + e^{2} + e^{\left (2 \, x\right )} + \frac {1}{5}\right )}}{x \log \relax (x)^{2} - 2 \, x \log \relax (x) + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.84
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{2 x}+{\mathrm e}^{2}+x^{4}+x +\frac {1}{5}}}{\ln \relax (x )-1}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 20, normalized size = 0.80 \begin {gather*} \frac {e^{\left (x^{4} + x + e^{2} + e^{\left (2 \, x\right )} + \frac {1}{5}\right )}}{\log \relax (x) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.52, size = 23, normalized size = 0.92 \begin {gather*} \frac {{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{1/5}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{{\mathrm {e}}^2}\,{\mathrm {e}}^x}{\ln \relax (x)-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 22, normalized size = 0.88 \begin {gather*} \frac {e^{x^{4} + x + e^{2 x} + \frac {1}{5} + e^{2}}}{\log {\relax (x )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________