Optimal. Leaf size=27 \[ x-\frac {4}{25} (-\log (2)+\log (3 (2-x))) (5 (15+x)+\log (x)) \]
________________________________________________________________________________________
Rubi [C] time = 0.71, antiderivative size = 90, normalized size of antiderivative = 3.33, number of steps used = 15, number of rules used = 11, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.196, Rules used = {1593, 6742, 893, 43, 2416, 2389, 2295, 2392, 2391, 2316, 2315} \begin {gather*} \frac {4}{25} \text {Li}_2\left (1-\frac {x}{2}\right )+\frac {4 \text {Li}_2\left (\frac {x}{2}\right )}{25}+\frac {4 x}{5}+\frac {1}{5} x (1+\log (16))+\frac {4}{5} (2-x) \log (6-3 x)-\frac {68}{5} \log (2-x)-\frac {4}{25} \log (2) \log (x-2)+\frac {1}{25} \log (16) \log (x)-\frac {4}{25} \log (6) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 893
Rule 1593
Rule 2295
Rule 2315
Rule 2316
Rule 2389
Rule 2391
Rule 2392
Rule 2416
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-350 x+5 x^2+\left (-8-36 x+20 x^2\right ) \log (2)+\left (8+36 x-20 x^2\right ) \log (6-3 x)-4 x \log (x)}{x (-50+25 x)} \, dx\\ &=\int \left (\frac {350 x \left (1+\frac {18 \log (2)}{175}\right )+8 \log (2)-5 x^2 (1+\log (16))-8 \log (6-3 x)-36 x \log (6-3 x)+20 x^2 \log (6-3 x)}{25 (2-x) x}-\frac {4 \log (x)}{25 (-2+x)}\right ) \, dx\\ &=\frac {1}{25} \int \frac {350 x \left (1+\frac {18 \log (2)}{175}\right )+8 \log (2)-5 x^2 (1+\log (16))-8 \log (6-3 x)-36 x \log (6-3 x)+20 x^2 \log (6-3 x)}{(2-x) x} \, dx-\frac {4}{25} \int \frac {\log (x)}{-2+x} \, dx\\ &=-\frac {4}{25} \log (2) \log (-2+x)+\frac {1}{25} \int \left (\frac {8 \log (2)+2 x (175+18 \log (2))-5 x^2 (1+\log (16))}{(2-x) x}-\frac {4 (1+5 x) \log (6-3 x)}{x}\right ) \, dx-\frac {4}{25} \int \frac {\log \left (\frac {x}{2}\right )}{-2+x} \, dx\\ &=-\frac {4}{25} \log (2) \log (-2+x)+\frac {4}{25} \text {Li}_2\left (1-\frac {x}{2}\right )+\frac {1}{25} \int \frac {8 \log (2)+2 x (175+18 \log (2))-5 x^2 (1+\log (16))}{(2-x) x} \, dx-\frac {4}{25} \int \frac {(1+5 x) \log (6-3 x)}{x} \, dx\\ &=-\frac {4}{25} \log (2) \log (-2+x)+\frac {4}{25} \text {Li}_2\left (1-\frac {x}{2}\right )+\frac {1}{25} \int \left (-\frac {340}{-2+x}+\frac {\log (16)}{x}+5 (1+\log (16))\right ) \, dx-\frac {4}{25} \int \left (5 \log (6-3 x)+\frac {\log (6-3 x)}{x}\right ) \, dx\\ &=\frac {1}{5} x (1+\log (16))-\frac {68}{5} \log (2-x)-\frac {4}{25} \log (2) \log (-2+x)+\frac {1}{25} \log (16) \log (x)+\frac {4}{25} \text {Li}_2\left (1-\frac {x}{2}\right )-\frac {4}{25} \int \frac {\log (6-3 x)}{x} \, dx-\frac {4}{5} \int \log (6-3 x) \, dx\\ &=\frac {1}{5} x (1+\log (16))-\frac {68}{5} \log (2-x)-\frac {4}{25} \log (2) \log (-2+x)-\frac {4}{25} \log (6) \log (x)+\frac {1}{25} \log (16) \log (x)+\frac {4}{25} \text {Li}_2\left (1-\frac {x}{2}\right )-\frac {4}{25} \int \frac {\log \left (1-\frac {x}{2}\right )}{x} \, dx+\frac {4}{15} \operatorname {Subst}(\int \log (x) \, dx,x,6-3 x)\\ &=\frac {4 x}{5}+\frac {1}{5} x (1+\log (16))+\frac {4}{5} (2-x) \log (6-3 x)-\frac {68}{5} \log (2-x)-\frac {4}{25} \log (2) \log (-2+x)-\frac {4}{25} \log (6) \log (x)+\frac {1}{25} \log (16) \log (x)+\frac {4}{25} \text {Li}_2\left (1-\frac {x}{2}\right )+\frac {4 \text {Li}_2\left (\frac {x}{2}\right )}{25}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.09, size = 62, normalized size = 2.30 \begin {gather*} \frac {1}{25} \left (20 x+5 x (1+\log (16))-20 (-2+x) \log (6-3 x)-4 (85+\log (2)) \log (-2+x)-4 \log (3) \log (x)+4 \text {Li}_2\left (1-\frac {x}{2}\right )+4 \text {Li}_2\left (\frac {x}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 33, normalized size = 1.22 \begin {gather*} \frac {4}{5} \, x \log \relax (2) + \frac {4}{25} \, {\left (\log \relax (2) - \log \left (-3 \, x + 6\right )\right )} \log \relax (x) - \frac {4}{5} \, {\left (x + 15\right )} \log \left (-3 \, x + 6\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 36, normalized size = 1.33 \begin {gather*} \frac {1}{5} \, x {\left (4 \, \log \relax (2) + 5\right )} + \frac {4}{25} \, \log \relax (2) \log \relax (x) - \frac {4}{25} \, {\left (5 \, x + \log \relax (x)\right )} \log \left (-3 \, x + 6\right ) - 12 \, \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 37, normalized size = 1.37
method | result | size |
risch | \(\left (-\frac {4 x}{5}-\frac {4 \ln \relax (x )}{25}\right ) \ln \left (-3 x +6\right )+\frac {4 x \ln \relax (2)}{5}+x -12 \ln \left (x -2\right )+\frac {4 \ln \relax (2) \ln \left (-x \right )}{25}\) | \(37\) |
norman | \(\left (1+\frac {4 \ln \relax (2)}{5}\right ) x +\frac {4 \ln \relax (2) \ln \relax (x )}{25}-12 \ln \left (-3 x +6\right )-\frac {4 x \ln \left (-3 x +6\right )}{5}-\frac {4 \ln \relax (x ) \ln \left (-3 x +6\right )}{25}\) | \(43\) |
default | \(x -\frac {68 \ln \left (x -2\right )}{5}-\frac {4 \left (\ln \relax (x )-\ln \left (\frac {x}{2}\right )\right ) \ln \left (1-\frac {x}{2}\right )}{25}+\frac {4 \dilog \left (\frac {x}{2}\right )}{25}+\frac {4 \ln \relax (2) \ln \relax (x )}{25}+\frac {4 x \ln \relax (2)}{5}-\frac {4 \ln \relax (3) \ln \relax (x )}{25}-\frac {4 x \ln \relax (3)}{5}+\frac {4 \left (2-x \right ) \ln \left (2-x \right )}{5}-\frac {8}{5}-\frac {4 \left (\ln \left (2-x \right )-\ln \left (1-\frac {x}{2}\right )\right ) \ln \left (\frac {x}{2}\right )}{25}+\frac {4 \dilog \left (1-\frac {x}{2}\right )}{25}\) | \(97\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.56, size = 57, normalized size = 2.11 \begin {gather*} -\frac {1}{5} \, {\left (4 i \, \pi + 4 \, \log \relax (3) - 4 \, \log \relax (2) - 5\right )} x - \frac {4}{25} \, {\left (\log \left (x - 2\right ) - \log \relax (x)\right )} \log \relax (2) - \frac {4}{25} \, {\left (5 \, x - \log \relax (2) + \log \relax (x) + 75\right )} \log \left (x - 2\right ) - \frac {4}{25} \, {\left (i \, \pi + \log \relax (3)\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.70, size = 38, normalized size = 1.41 \begin {gather*} x-12\,\ln \left (x-2\right )+\frac {4\,x\,\ln \relax (2)}{5}-\frac {4\,x\,\ln \left (6-3\,x\right )}{5}+\frac {4\,\ln \relax (2)\,\ln \relax (x)}{25}-\frac {4\,\ln \left (6-3\,x\right )\,\ln \relax (x)}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.72, size = 60, normalized size = 2.22 \begin {gather*} x \left (\frac {4 \log {\relax (2 )}}{5} + 1\right ) + \left (- \frac {4 x}{5} - \frac {4 \log {\relax (x )}}{25}\right ) \log {\left (6 - 3 x \right )} + \frac {4 \log {\relax (2 )} \log {\relax (x )}}{25} - 12 \log {\left (x + \frac {-300 - 4 \log {\relax (2 )}}{2 \log {\relax (2 )} + 150} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________