Optimal. Leaf size=30 \[ \frac {e^{5 \left (e^{\left (3-x+\log ^2(-2+x)\right )^2}+x^2\right )}}{x}+\log (4) \]
________________________________________________________________________________________
Rubi [B] time = 10.10, antiderivative size = 223, normalized size of antiderivative = 7.43, number of steps used = 2, number of rules used = 2, integrand size = 147, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {1593, 2288} \begin {gather*} \frac {\exp \left (5 \exp \left (x^2-6 x+\log ^4(x-2)+2 (3-x) \log ^2(x-2)+9\right )+5 x^2\right ) \left (-\left (x^3-5 x^2+\left (2 x-x^2\right ) \log ^2(x-2)+2 \left (3 x-x^2\right ) \log (x-2)+6 x+2 x \log ^3(x-2)\right ) \exp \left (x^2-6 x+\log ^4(x-2)+2 (3-x) \log ^2(x-2)+9\right )-x^3+2 x^2\right )}{(2-x) x^2 \left (x-\left (-x+\frac {2 \log ^3(x-2)}{2-x}+\log ^2(x-2)+\frac {2 (3-x) \log (x-2)}{2-x}+3\right ) \exp \left (x^2-6 x+\log ^4(x-2)+2 (3-x) \log ^2(x-2)+9\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (5 \exp \left (9-6 x+x^2+(6-2 x) \log ^2(-2+x)+\log ^4(-2+x)\right )+5 x^2\right ) \left (2-x-20 x^2+10 x^3+\exp \left (9-6 x+x^2+(6-2 x) \log ^2(-2+x)+\log ^4(-2+x)\right ) \left (60 x-50 x^2+10 x^3+\left (60 x-20 x^2\right ) \log (-2+x)+\left (20 x-10 x^2\right ) \log ^2(-2+x)+20 x \log ^3(-2+x)\right )\right )}{(-2+x) x^2} \, dx\\ &=\frac {\exp \left (5 \exp \left (9-6 x+x^2+2 (3-x) \log ^2(-2+x)+\log ^4(-2+x)\right )+5 x^2\right ) \left (2 x^2-x^3-\exp \left (9-6 x+x^2+2 (3-x) \log ^2(-2+x)+\log ^4(-2+x)\right ) \left (6 x-5 x^2+x^3+2 \left (3 x-x^2\right ) \log (-2+x)+\left (2 x-x^2\right ) \log ^2(-2+x)+2 x \log ^3(-2+x)\right )\right )}{(2-x) x^2 \left (x-\exp \left (9-6 x+x^2+2 (3-x) \log ^2(-2+x)+\log ^4(-2+x)\right ) \left (3-x+\frac {2 (3-x) \log (-2+x)}{2-x}+\log ^2(-2+x)+\frac {2 \log ^3(-2+x)}{2-x}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 27, normalized size = 0.90 \begin {gather*} \frac {e^{5 \left (e^{\left (3-x+\log ^2(-2+x)\right )^2}+x^2\right )}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 39, normalized size = 1.30 \begin {gather*} \frac {e^{\left (5 \, x^{2} + 5 \, e^{\left (\log \left (x - 2\right )^{4} - 2 \, {\left (x - 3\right )} \log \left (x - 2\right )^{2} + x^{2} - 6 \, x + 9\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (10 \, x^{3} - 20 \, x^{2} + 10 \, {\left (2 \, x \log \left (x - 2\right )^{3} + x^{3} - {\left (x^{2} - 2 \, x\right )} \log \left (x - 2\right )^{2} - 5 \, x^{2} - 2 \, {\left (x^{2} - 3 \, x\right )} \log \left (x - 2\right ) + 6 \, x\right )} e^{\left (\log \left (x - 2\right )^{4} - 2 \, {\left (x - 3\right )} \log \left (x - 2\right )^{2} + x^{2} - 6 \, x + 9\right )} - x + 2\right )} e^{\left (5 \, x^{2} + 5 \, e^{\left (\log \left (x - 2\right )^{4} - 2 \, {\left (x - 3\right )} \log \left (x - 2\right )^{2} + x^{2} - 6 \, x + 9\right )}\right )}}{x^{3} - 2 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 28, normalized size = 0.93
method | result | size |
risch | \(\frac {{\mathrm e}^{5 \,{\mathrm e}^{\left (3+\ln \left (x -2\right )^{2}-x \right )^{2}}+5 x^{2}}}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (10 \, x^{3} - 20 \, x^{2} + 10 \, {\left (2 \, x \log \left (x - 2\right )^{3} + x^{3} - {\left (x^{2} - 2 \, x\right )} \log \left (x - 2\right )^{2} - 5 \, x^{2} - 2 \, {\left (x^{2} - 3 \, x\right )} \log \left (x - 2\right ) + 6 \, x\right )} e^{\left (\log \left (x - 2\right )^{4} - 2 \, {\left (x - 3\right )} \log \left (x - 2\right )^{2} + x^{2} - 6 \, x + 9\right )} - x + 2\right )} e^{\left (5 \, x^{2} + 5 \, e^{\left (\log \left (x - 2\right )^{4} - 2 \, {\left (x - 3\right )} \log \left (x - 2\right )^{2} + x^{2} - 6 \, x + 9\right )}\right )}}{x^{3} - 2 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.64, size = 49, normalized size = 1.63 \begin {gather*} \frac {{\mathrm {e}}^{5\,x^2}\,{\mathrm {e}}^{5\,{\mathrm {e}}^{{\ln \left (x-2\right )}^4}\,{\mathrm {e}}^{-6\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^9\,{\mathrm {e}}^{6\,{\ln \left (x-2\right )}^2}\,{\mathrm {e}}^{-2\,x\,{\ln \left (x-2\right )}^2}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.96, size = 37, normalized size = 1.23 \begin {gather*} \frac {e^{5 x^{2} + 5 e^{x^{2} - 6 x + \left (6 - 2 x\right ) \log {\left (x - 2 \right )}^{2} + \log {\left (x - 2 \right )}^{4} + 9}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________