Optimal. Leaf size=34 \[ -x+\frac {\frac {e^4-e^8-x}{x}+x}{\left (2+e^5\right )^2+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 45, normalized size of antiderivative = 1.32, number of steps used = 8, number of rules used = 5, integrand size = 160, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6, 1680, 1814, 21, 8} \begin {gather*} \frac {\left (-5-4 e^5-e^{10}\right ) x+e^4 \left (1-e^4\right )}{x \left (x+\left (2+e^5\right )^2\right )}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 8
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 (-4-2 x)-e^{20} x^2+\left (-11-8 e^{15}\right ) x^2-8 x^3-x^4+e^8 (4+2 x)+e^5 \left (-4 e^4+4 e^8-28 x^2-8 x^3\right )+e^{10} \left (-e^4+e^8-23 x^2-2 x^3\right )}{16 x^2+8 e^{15} x^2+e^{20} x^2+8 x^3+x^4+e^{10} \left (24 x^2+2 x^3\right )+e^5 \left (32 x^2+8 x^3\right )} \, dx\\ &=\int \frac {e^4 (-4-2 x)+\left (-11-8 e^{15}-e^{20}\right ) x^2-8 x^3-x^4+e^8 (4+2 x)+e^5 \left (-4 e^4+4 e^8-28 x^2-8 x^3\right )+e^{10} \left (-e^4+e^8-23 x^2-2 x^3\right )}{16 x^2+8 e^{15} x^2+e^{20} x^2+8 x^3+x^4+e^{10} \left (24 x^2+2 x^3\right )+e^5 \left (32 x^2+8 x^3\right )} \, dx\\ &=\int \frac {e^4 (-4-2 x)+\left (-11-8 e^{15}-e^{20}\right ) x^2-8 x^3-x^4+e^8 (4+2 x)+e^5 \left (-4 e^4+4 e^8-28 x^2-8 x^3\right )+e^{10} \left (-e^4+e^8-23 x^2-2 x^3\right )}{e^{20} x^2+\left (16+8 e^{15}\right ) x^2+8 x^3+x^4+e^{10} \left (24 x^2+2 x^3\right )+e^5 \left (32 x^2+8 x^3\right )} \, dx\\ &=\int \frac {e^4 (-4-2 x)+\left (-11-8 e^{15}-e^{20}\right ) x^2-8 x^3-x^4+e^8 (4+2 x)+e^5 \left (-4 e^4+4 e^8-28 x^2-8 x^3\right )+e^{10} \left (-e^4+e^8-23 x^2-2 x^3\right )}{\left (16+8 e^{15}+e^{20}\right ) x^2+8 x^3+x^4+e^{10} \left (24 x^2+2 x^3\right )+e^5 \left (32 x^2+8 x^3\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {\left (2+e^5\right )^4 \left (4-16 e^5-20 e^{10}-8 e^{15}-e^{20}\right )-16 \left (20+2 e^4+36 e^5-2 e^8+25 e^{10}+8 e^{15}+e^{20}\right ) x+8 \left (26+40 e^5+26 e^{10}+8 e^{15}+e^{20}\right ) x^2-16 x^4}{\left (16+32 e^5+24 e^{10}+8 e^{15}+e^{20}-4 x^2\right )^2} \, dx,x,\frac {1}{4} \left (8+8 e^5+2 e^{10}\right )+x\right )\\ &=\frac {e^4 \left (1-e^4\right )+\left (-5-4 e^5-e^{10}\right ) x}{x \left (\left (2+e^5\right )^2+x\right )}-\frac {\operatorname {Subst}\left (\int \frac {2 \left (2+e^5\right )^8-8 \left (2+e^5\right )^4 x^2}{16+32 e^5+24 e^{10}+8 e^{15}+e^{20}-4 x^2} \, dx,x,\frac {1}{4} \left (8+8 e^5+2 e^{10}\right )+x\right )}{2 \left (2+e^5\right )^4}\\ &=\frac {e^4 \left (1-e^4\right )+\left (-5-4 e^5-e^{10}\right ) x}{x \left (\left (2+e^5\right )^2+x\right )}-\operatorname {Subst}\left (\int 1 \, dx,x,\frac {1}{4} \left (8+8 e^5+2 e^{10}\right )+x\right )\\ &=-x+\frac {e^4 \left (1-e^4\right )+\left (-5-4 e^5-e^{10}\right ) x}{x \left (\left (2+e^5\right )^2+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 54, normalized size = 1.59 \begin {gather*} -\frac {-e^4+e^8+4 e^5 x (1+x)+e^{10} x (1+x)+x \left (5+4 x+x^2\right )}{x \left (4+4 e^5+e^{10}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 55, normalized size = 1.62 \begin {gather*} -\frac {x^{3} + 4 \, x^{2} + {\left (x^{2} + x\right )} e^{10} + 4 \, {\left (x^{2} + x\right )} e^{5} + 5 \, x + e^{8} - e^{4}}{x^{2} + x e^{10} + 4 \, x e^{5} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 39, normalized size = 1.15
method | result | size |
risch | \(-x +\frac {\left (-{\mathrm e}^{10}-4 \,{\mathrm e}^{5}-5\right ) x -{\mathrm e}^{8}+{\mathrm e}^{4}}{\left ({\mathrm e}^{10}+4 \,{\mathrm e}^{5}+x +4\right ) x}\) | \(39\) |
norman | \(\frac {\left ({\mathrm e}^{20}+8 \,{\mathrm e}^{15}+23 \,{\mathrm e}^{10}+28 \,{\mathrm e}^{5}+11\right ) x -x^{3}-{\mathrm e}^{8}+{\mathrm e}^{4}}{x \left ({\mathrm e}^{10}+4 \,{\mathrm e}^{5}+x +4\right )}\) | \(56\) |
gosper | \(\frac {x \,{\mathrm e}^{20}+8 x \,{\mathrm e}^{15}+23 x \,{\mathrm e}^{10}-x^{3}+28 x \,{\mathrm e}^{5}-{\mathrm e}^{8}+{\mathrm e}^{4}+11 x}{x \left ({\mathrm e}^{10}+4 \,{\mathrm e}^{5}+x +4\right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 39, normalized size = 1.15 \begin {gather*} -x - \frac {x {\left (e^{10} + 4 \, e^{5} + 5\right )} + e^{8} - e^{4}}{x^{2} + x {\left (e^{10} + 4 \, e^{5} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.53, size = 37, normalized size = 1.09 \begin {gather*} -x-\frac {{\mathrm {e}}^8-{\mathrm {e}}^4+x\,\left (4\,{\mathrm {e}}^5+{\mathrm {e}}^{10}+5\right )}{x\,\left (x+4\,{\mathrm {e}}^5+{\mathrm {e}}^{10}+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.55, size = 36, normalized size = 1.06 \begin {gather*} - x - \frac {x \left (5 + 4 e^{5} + e^{10}\right ) - e^{4} + e^{8}}{x^{2} + x \left (4 + 4 e^{5} + e^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________