Optimal. Leaf size=13 \[ (5+x) \left (\frac {36}{e^4}+x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.01, antiderivative size = 27, normalized size of antiderivative = 2.08, number of steps used = 3, number of rules used = 1, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {12} \begin {gather*} x^3+5 x^2+\frac {1296 x}{e^8}+\frac {18 (2 x+5)^2}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (1296+e^4 (360+144 x)+e^8 \left (10 x+3 x^2\right )\right ) \, dx}{e^8}\\ &=\frac {1296 x}{e^8}+\frac {18 (5+2 x)^2}{e^4}+\int \left (10 x+3 x^2\right ) \, dx\\ &=\frac {1296 x}{e^8}+5 x^2+x^3+\frac {18 (5+2 x)^2}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 29, normalized size = 2.23 \begin {gather*} \frac {1296 x}{e^8}+\frac {360 x}{e^4}+5 x^2+\frac {72 x^2}{e^4}+x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 30, normalized size = 2.31 \begin {gather*} {\left ({\left (x^{3} + 5 \, x^{2}\right )} e^{8} + 72 \, {\left (x^{2} + 5 \, x\right )} e^{4} + 1296 \, x\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 30, normalized size = 2.31 \begin {gather*} {\left ({\left (x^{3} + 5 \, x^{2}\right )} e^{8} + 72 \, {\left (x^{2} + 5 \, x\right )} e^{4} + 1296 \, x\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 27, normalized size = 2.08
method | result | size |
risch | \(x^{3}+5 x^{2}+72 x^{2} {\mathrm e}^{-4}+360 \,{\mathrm e}^{-4} x +1296 \,{\mathrm e}^{-8} x\) | \(27\) |
gosper | \(x \left (x^{2} {\mathrm e}^{8}+5 x \,{\mathrm e}^{8}+72 x \,{\mathrm e}^{4}+360 \,{\mathrm e}^{4}+1296\right ) {\mathrm e}^{-8}\) | \(37\) |
default | \({\mathrm e}^{-8} \left ({\mathrm e}^{8} \left (x^{3}+5 x^{2}\right )+{\mathrm e}^{4} \left (72 x^{2}+360 x \right )+1296 x \right )\) | \(38\) |
norman | \(\left ({\mathrm e}^{7} x^{3}+{\mathrm e}^{3} \left (5 \,{\mathrm e}^{4}+72\right ) x^{2}+72 \left (5 \,{\mathrm e}^{4}+18\right ) {\mathrm e}^{-1} x \right ) {\mathrm e}^{-7}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 30, normalized size = 2.31 \begin {gather*} {\left ({\left (x^{3} + 5 \, x^{2}\right )} e^{8} + 72 \, {\left (x^{2} + 5 \, x\right )} e^{4} + 1296 \, x\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 26, normalized size = 2.00 \begin {gather*} x^3+{\mathrm {e}}^{-4}\,\left (5\,{\mathrm {e}}^4+72\right )\,x^2+{\mathrm {e}}^{-8}\,\left (360\,{\mathrm {e}}^4+1296\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.07, size = 27, normalized size = 2.08 \begin {gather*} x^{3} + \frac {x^{2} \left (72 + 5 e^{4}\right )}{e^{4}} + \frac {x \left (1296 + 360 e^{4}\right )}{e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________