Optimal. Leaf size=23 \[ 7+e^3+e^x+\frac {x}{2}-\frac {1}{x \log (\log (3))} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 19, normalized size of antiderivative = 0.83, number of steps used = 6, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 14, 2194} \begin {gather*} \frac {x}{2}+e^x-\frac {1}{x \log (\log (3))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2+\left (x^2+2 e^x x^2\right ) \log (\log (3))}{x^2} \, dx}{2 \log (\log (3))}\\ &=\frac {\int \left (2 e^x \log (\log (3))+\frac {2+x^2 \log (\log (3))}{x^2}\right ) \, dx}{2 \log (\log (3))}\\ &=\frac {\int \frac {2+x^2 \log (\log (3))}{x^2} \, dx}{2 \log (\log (3))}+\int e^x \, dx\\ &=e^x+\frac {\int \left (\frac {2}{x^2}+\log (\log (3))\right ) \, dx}{2 \log (\log (3))}\\ &=e^x+\frac {x}{2}-\frac {1}{x \log (\log (3))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.83 \begin {gather*} e^x+\frac {x}{2}-\frac {1}{x \log (\log (3))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 25, normalized size = 1.09 \begin {gather*} \frac {{\left (x^{2} + 2 \, x e^{x}\right )} \log \left (\log \relax (3)\right ) - 2}{2 \, x \log \left (\log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 27, normalized size = 1.17 \begin {gather*} \frac {x^{2} \log \left (\log \relax (3)\right ) + 2 \, x e^{x} \log \left (\log \relax (3)\right ) - 2}{2 \, x \log \left (\log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.74
method | result | size |
risch | \(-\frac {1}{x \ln \left (\ln \relax (3)\right )}+{\mathrm e}^{x}+\frac {x}{2}\) | \(17\) |
norman | \(\frac {{\mathrm e}^{x} x +\frac {x^{2}}{2}-\frac {1}{\ln \left (\ln \relax (3)\right )}}{x}\) | \(22\) |
default | \(\frac {-\frac {2}{x}+2 \,{\mathrm e}^{x} \ln \left (\ln \relax (3)\right )+\ln \left (\ln \relax (3)\right ) x}{2 \ln \left (\ln \relax (3)\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 25, normalized size = 1.09 \begin {gather*} \frac {x \log \left (\log \relax (3)\right ) + 2 \, e^{x} \log \left (\log \relax (3)\right ) - \frac {2}{x}}{2 \, \log \left (\log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 16, normalized size = 0.70 \begin {gather*} \frac {x}{2}+{\mathrm {e}}^x-\frac {1}{x\,\ln \left (\ln \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.83 \begin {gather*} \frac {x \log {\left (\log {\relax (3 )} \right )} - \frac {2}{x}}{2 \log {\left (\log {\relax (3 )} \right )}} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________