Optimal. Leaf size=22 \[ 5 \left (4+e^2+e^{10}-x\right ) x \log (5+x-\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 0.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20+e^2 (5-5 x)+e^{10} (5-5 x)-25 x+5 x^2+\left (-100+e^2 (-25-5 x)+e^{10} (-25-5 x)+30 x+10 x^2+\left (20+5 e^2+5 e^{10}-10 x\right ) \log (x)\right ) \log (5+x-\log (x))}{-5-x+\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20+\left (e^2+e^{10}\right ) (5-5 x)-25 x+5 x^2+\left (-100+e^2 (-25-5 x)+e^{10} (-25-5 x)+30 x+10 x^2+\left (20+5 e^2+5 e^{10}-10 x\right ) \log (x)\right ) \log (5+x-\log (x))}{-5-x+\log (x)} \, dx\\ &=\int \frac {5 \left (-4+e^2 \left (1+e^8\right ) (-1+x)+5 x-x^2+\left (4+e^2+e^{10}-2 x\right ) (5+x-\log (x)) \log (5+x-\log (x))\right )}{5+x-\log (x)} \, dx\\ &=5 \int \frac {-4+e^2 \left (1+e^8\right ) (-1+x)+5 x-x^2+\left (4+e^2+e^{10}-2 x\right ) (5+x-\log (x)) \log (5+x-\log (x))}{5+x-\log (x)} \, dx\\ &=5 \int \left (\frac {-4-e^2-e^{10}+\left (5+e^2+e^{10}\right ) x-x^2}{5+x-\log (x)}+\left (4+e^2+e^{10}-2 x\right ) \log (5+x-\log (x))\right ) \, dx\\ &=5 \int \frac {-4-e^2-e^{10}+\left (5+e^2+e^{10}\right ) x-x^2}{5+x-\log (x)} \, dx+5 \int \left (4+e^2+e^{10}-2 x\right ) \log (5+x-\log (x)) \, dx\\ &=5 \int \left (-\frac {4 \left (1+\frac {1}{4} e^2 \left (1+e^8\right )\right )}{5+x-\log (x)}+\frac {\left (5+e^2+e^{10}\right ) x}{5+x-\log (x)}-\frac {x^2}{5+x-\log (x)}\right ) \, dx+5 \int \left (4 \left (1+\frac {1}{4} e^2 \left (1+e^8\right )\right ) \log (5+x-\log (x))-2 x \log (5+x-\log (x))\right ) \, dx\\ &=-\left (5 \int \frac {x^2}{5+x-\log (x)} \, dx\right )-10 \int x \log (5+x-\log (x)) \, dx-\left (5 \left (4+e^2+e^{10}\right )\right ) \int \frac {1}{5+x-\log (x)} \, dx+\left (5 \left (4+e^2+e^{10}\right )\right ) \int \log (5+x-\log (x)) \, dx+\left (5 \left (5+e^2+e^{10}\right )\right ) \int \frac {x}{5+x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 22, normalized size = 1.00 \begin {gather*} 5 \left (4+e^2+e^{10}-x\right ) x \log (5+x-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 27, normalized size = 1.23 \begin {gather*} -5 \, {\left (x^{2} - x e^{10} - x e^{2} - 4 \, x\right )} \log \left (x - \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 51, normalized size = 2.32 \begin {gather*} -5 \, x^{2} \log \left (x - \log \relax (x) + 5\right ) + 5 \, x e^{10} \log \left (x - \log \relax (x) + 5\right ) + 5 \, x e^{2} \log \left (x - \log \relax (x) + 5\right ) + 20 \, x \log \left (x - \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 29, normalized size = 1.32
method | result | size |
risch | \(\left (5 x \,{\mathrm e}^{10}+5 \,{\mathrm e}^{2} x -5 x^{2}+20 x \right ) \ln \left (x -\ln \relax (x )+5\right )\) | \(29\) |
norman | \(\left (5 \,{\mathrm e}^{10}+5 \,{\mathrm e}^{2}+20\right ) x \ln \left (x -\ln \relax (x )+5\right )-5 \ln \left (x -\ln \relax (x )+5\right ) x^{2}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.96, size = 23, normalized size = 1.05 \begin {gather*} -5 \, {\left (x^{2} - x {\left (e^{10} + e^{2} + 4\right )}\right )} \log \left (x - \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.68, size = 20, normalized size = 0.91 \begin {gather*} 5\,x\,\ln \left (x-\ln \relax (x)+5\right )\,\left ({\mathrm {e}}^2-x+{\mathrm {e}}^{10}+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 29, normalized size = 1.32 \begin {gather*} \left (- 5 x^{2} + 20 x + 5 x e^{2} + 5 x e^{10}\right ) \log {\left (x - \log {\relax (x )} + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________