Optimal. Leaf size=23 \[ \frac {-x+\frac {2}{5+x}+\frac {1}{-4 x+\log (x)}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25+190 x-81 x^2-56 x^3+\left (-25+70 x+31 x^2\right ) \log (x)+(-10-4 x) \log ^2(x)}{400 x^4+160 x^5+16 x^6+\left (-200 x^3-80 x^4-8 x^5\right ) \log (x)+\left (25 x^2+10 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25+190 x-81 x^2-56 x^3+\left (-25+70 x+31 x^2\right ) \log (x)-2 (5+2 x) \log ^2(x)}{x^2 (5+x)^2 (4 x-\log (x))^2} \, dx\\ &=\int \left (-\frac {2 (5+2 x)}{x^2 (5+x)^2}+\frac {-1+4 x}{x^2 (4 x-\log (x))^2}+\frac {1}{x^2 (4 x-\log (x))}\right ) \, dx\\ &=-\left (2 \int \frac {5+2 x}{x^2 (5+x)^2} \, dx\right )+\int \frac {-1+4 x}{x^2 (4 x-\log (x))^2} \, dx+\int \frac {1}{x^2 (4 x-\log (x))} \, dx\\ &=\frac {2}{x (5+x)}+\int \left (-\frac {1}{x^2 (4 x-\log (x))^2}+\frac {4}{x (4 x-\log (x))^2}\right ) \, dx+\int \frac {1}{x^2 (4 x-\log (x))} \, dx\\ &=\frac {2}{x (5+x)}+4 \int \frac {1}{x (4 x-\log (x))^2} \, dx-\int \frac {1}{x^2 (4 x-\log (x))^2} \, dx+\int \frac {1}{x^2 (4 x-\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 29, normalized size = 1.26 \begin {gather*} \frac {2}{5 x}-\frac {2}{5 (5+x)}+\frac {1}{x (-4 x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 34, normalized size = 1.48 \begin {gather*} \frac {7 \, x - 2 \, \log \relax (x) - 5}{4 \, x^{3} + 20 \, x^{2} - {\left (x^{2} + 5 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 28, normalized size = 1.22 \begin {gather*} -\frac {1}{4 \, x^{2} - x \log \relax (x)} - \frac {2}{5 \, {\left (x + 5\right )}} + \frac {2}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.17
method | result | size |
risch | \(\frac {2}{\left (5+x \right ) x}-\frac {1}{x \left (4 x -\ln \relax (x )\right )}\) | \(27\) |
norman | \(\frac {-5+7 x -2 \ln \relax (x )}{x \left (4 x^{2}-x \ln \relax (x )+20 x -5 \ln \relax (x )\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 34, normalized size = 1.48 \begin {gather*} \frac {7 \, x - 2 \, \log \relax (x) - 5}{4 \, x^{3} + 20 \, x^{2} - {\left (x^{2} + 5 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.64, size = 26, normalized size = 1.13 \begin {gather*} \frac {2}{x\,\left (x+5\right )}-\frac {1}{x\,\left (4\,x-\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.83 \begin {gather*} \frac {2}{x^{2} + 5 x} + \frac {1}{- 4 x^{2} + x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________