Optimal. Leaf size=25 \[ -1-e^x-\left (\frac {1}{x}\right )^{\frac {e^{e^x}}{x^4}}+10 x \]
________________________________________________________________________________________
Rubi [F] time = 0.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x^5-e^x x^5+e^{e^x} \left (\frac {1}{x}\right )^{\frac {e^{e^x}}{x^4}} \left (1+\left (4-e^x x\right ) \log \left (\frac {1}{x}\right )\right )}{x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (10-e^x-e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \left (-1-4 \log \left (\frac {1}{x}\right )+e^x x \log \left (\frac {1}{x}\right )\right )\right ) \, dx\\ &=10 x-\int e^x \, dx-\int e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \left (-1-4 \log \left (\frac {1}{x}\right )+e^x x \log \left (\frac {1}{x}\right )\right ) \, dx\\ &=-e^x+10 x-\int \left (-e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}}+e^{e^x+x} \left (\frac {1}{x}\right )^{4+\frac {e^{e^x}}{x^4}} \log \left (\frac {1}{x}\right )-4 e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \log \left (\frac {1}{x}\right )\right ) \, dx\\ &=-e^x+10 x+4 \int e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \log \left (\frac {1}{x}\right ) \, dx+\int e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \, dx-\int e^{e^x+x} \left (\frac {1}{x}\right )^{4+\frac {e^{e^x}}{x^4}} \log \left (\frac {1}{x}\right ) \, dx\\ &=-e^x+10 x+4 \int \frac {\int e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \, dx}{x} \, dx-\log \left (\frac {1}{x}\right ) \int e^{e^x+x} \left (\frac {1}{x}\right )^{4+\frac {e^{e^x}}{x^4}} \, dx+\left (4 \log \left (\frac {1}{x}\right )\right ) \int e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \, dx+\int e^{e^x} \left (\frac {1}{x}\right )^{5+\frac {e^{e^x}}{x^4}} \, dx-\int \frac {\int e^{e^x+x} \left (\frac {1}{x}\right )^{4+\frac {e^{e^x}}{x^4}} \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 24, normalized size = 0.96 \begin {gather*} -e^x-\left (\frac {1}{x}\right )^{\frac {e^{e^x}}{x^4}}+10 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 21, normalized size = 0.84 \begin {gather*} 10 \, x - \frac {1}{x}^{\frac {e^{\left (e^{x}\right )}}{x^{4}}} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.84, size = 21, normalized size = 0.84 \begin {gather*} 10 \, x - \frac {1}{x^{\frac {e^{\left (e^{x}\right )}}{x^{4}}}} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-{\mathrm e}^{x} x +4\right ) \ln \left (\frac {1}{x}\right )+1\right ) {\mathrm e}^{{\mathrm e}^{x}} {\mathrm e}^{\frac {\ln \left (\frac {1}{x}\right ) {\mathrm e}^{{\mathrm e}^{x}}}{x^{4}}}-x^{5} {\mathrm e}^{x}+10 x^{5}}{x^{5}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 21, normalized size = 0.84 \begin {gather*} 10 \, x - \frac {1}{x^{\frac {e^{\left (e^{x}\right )}}{x^{4}}}} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 21, normalized size = 0.84 \begin {gather*} 10\,x-{\mathrm {e}}^x-{\left (\frac {1}{x}\right )}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^x}}{x^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.95, size = 20, normalized size = 0.80 \begin {gather*} 10 x - e^{x} - e^{\frac {e^{e^{x}} \log {\left (\frac {1}{x} \right )}}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________