Optimal. Leaf size=26 \[ e^{e^{-1+\frac {1}{3} e^{5 \left (e^{e^x}-x\right )}+2 x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \left (6+e^{5 e^{e^x}-5 x} \left (-5+5 e^{e^x+x}\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \left (6+e^{5 e^{e^x}-5 x} \left (-5+5 e^{e^x+x}\right )\right ) \, dx\\ &=\frac {1}{3} \int \left (6 \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right )+5 \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+5 \left (e^{e^x}-x\right )+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \left (-1+e^{e^x+x}\right )\right ) \, dx\\ &=\frac {5}{3} \int \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+5 \left (e^{e^x}-x\right )+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \left (-1+e^{e^x+x}\right ) \, dx+2 \int \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \, dx\\ &=\frac {5}{3} \int \left (-\exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+5 \left (e^{e^x}-x\right )+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right )+\exp \left (e^x+e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+5 \left (e^{e^x}-x\right )+x+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right )\right ) \, dx+2 \int \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \, dx\\ &=-\left (\frac {5}{3} \int \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+5 \left (e^{e^x}-x\right )+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \, dx\right )+\frac {5}{3} \int \exp \left (e^x+e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+5 \left (e^{e^x}-x\right )+x+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \, dx+2 \int \exp \left (e^{\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )}+\frac {1}{3} \left (-3+e^{5 e^{e^x}-5 x}+6 x\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 1.00 \begin {gather*} e^{e^{-1+\frac {1}{3} e^{5 e^{e^x}-5 x}+2 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.21, size = 28, normalized size = 1.08 \begin {gather*} e^{\left (e^{\left (2 \, x + \frac {1}{3} \, e^{\left (-5 \, {\left (x e^{x} - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{3} \, {\left (5 \, {\left (e^{\left (x + e^{x}\right )} - 1\right )} e^{\left (-5 \, x + 5 \, e^{\left (e^{x}\right )}\right )} + 6\right )} e^{\left (2 \, x + e^{\left (2 \, x + \frac {1}{3} \, e^{\left (-5 \, x + 5 \, e^{\left (e^{x}\right )}\right )} - 1\right )} + \frac {1}{3} \, e^{\left (-5 \, x + 5 \, e^{\left (e^{x}\right )}\right )} - 1\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 20, normalized size = 0.77
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{5 \,{\mathrm e}^{{\mathrm e}^{x}}-5 x}}{3}+2 x -1}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.19, size = 19, normalized size = 0.73 \begin {gather*} e^{\left (e^{\left (2 \, x + \frac {1}{3} \, e^{\left (-5 \, x + 5 \, e^{\left (e^{x}\right )}\right )} - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.57, size = 21, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^{5\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{-5\,x}}{3}}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 14.91, size = 20, normalized size = 0.77 \begin {gather*} e^{e^{2 x + \frac {e^{- 5 x + 5 e^{e^{x}}}}{3} - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________