Optimal. Leaf size=18 \[ e^{\frac {4 e^{-x^2} (3+\log (5))}{x^3}} \]
________________________________________________________________________________________
Rubi [F] time = 1.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x^2+\frac {2 e^{-x^2} (6+2 \log (5))}{x^3}} \left (-36-24 x^2+\left (-12-8 x^2\right ) \log (5)\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x^2+\frac {2 e^{-x^2} (6+2 \log (5))}{x^3}} \left (-12 (3+\log (5))-8 x^2 (3+\log (5))\right )}{x^4} \, dx\\ &=\int \left (-\frac {12 e^{-x^2+\frac {2 e^{-x^2} (6+2 \log (5))}{x^3}} (3+\log (5))}{x^4}-\frac {8 e^{-x^2+\frac {2 e^{-x^2} (6+2 \log (5))}{x^3}} (3+\log (5))}{x^2}\right ) \, dx\\ &=-\left ((8 (3+\log (5))) \int \frac {e^{-x^2+\frac {2 e^{-x^2} (6+2 \log (5))}{x^3}}}{x^2} \, dx\right )-(12 (3+\log (5))) \int \frac {e^{-x^2+\frac {2 e^{-x^2} (6+2 \log (5))}{x^3}}}{x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 29, normalized size = 1.61 \begin {gather*} 5^{\frac {4 e^{-x^2}}{x^3}} e^{\frac {12 e^{-x^2}}{x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 26, normalized size = 1.44 \begin {gather*} e^{\left (x^{2} - \frac {x^{5} - 4 \, {\left (\log \relax (5) + 3\right )} e^{\left (-x^{2}\right )}}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (6 \, x^{2} + {\left (2 \, x^{2} + 3\right )} \log \relax (5) + 9\right )} e^{\left (-x^{2} + \frac {4 \, {\left (\log \relax (5) + 3\right )} e^{\left (-x^{2}\right )}}{x^{3}}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 17, normalized size = 0.94
method | result | size |
risch | \({\mathrm e}^{\frac {4 \left (\ln \relax (5)+3\right ) {\mathrm e}^{-x^{2}}}{x^{3}}}\) | \(17\) |
norman | \({\mathrm e}^{\frac {2 \left (2 \ln \relax (5)+6\right ) {\mathrm e}^{-x^{2}}}{x^{3}}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 26, normalized size = 1.44 \begin {gather*} e^{\left (\frac {4 \, e^{\left (-x^{2}\right )} \log \relax (5)}{x^{3}} + \frac {12 \, e^{\left (-x^{2}\right )}}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.69, size = 26, normalized size = 1.44 \begin {gather*} 5^{\frac {4\,{\mathrm {e}}^{-x^2}}{x^3}}\,{\mathrm {e}}^{\frac {12\,{\mathrm {e}}^{-x^2}}{x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 15, normalized size = 0.83 \begin {gather*} e^{\frac {2 \left (2 \log {\relax (5 )} + 6\right ) e^{- x^{2}}}{x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________