Optimal. Leaf size=17 \[ \frac {1}{\log \left (-1-2 x-\frac {4}{x+\log (\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+\left (4 x-2 x^3\right ) \log (x)-4 x^2 \log (x) \log (\log (x))-2 x \log (x) \log ^2(\log (x))}{\left (\left (4 x^2+x^3+2 x^4\right ) \log (x)+\left (4 x+2 x^2+4 x^3\right ) \log (x) \log (\log (x))+\left (x+2 x^2\right ) \log (x) \log ^2(\log (x))\right ) \log ^2\left (\frac {-4-x-2 x^2+(-1-2 x) \log (\log (x))}{x+\log (\log (x))}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (2+2 x \log (x)-x^3 \log (x)-2 x^2 \log (x) \log (\log (x))-x \log (x) \log ^2(\log (x))\right )}{x \log (x) \left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (\frac {-4-x-2 x^2+(-1-2 x) \log (\log (x))}{x+\log (\log (x))}\right )} \, dx\\ &=2 \int \frac {2+2 x \log (x)-x^3 \log (x)-2 x^2 \log (x) \log (\log (x))-x \log (x) \log ^2(\log (x))}{x \log (x) \left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (\frac {-4-x-2 x^2+(-1-2 x) \log (\log (x))}{x+\log (\log (x))}\right )} \, dx\\ &=2 \int \left (\frac {2}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )}-\frac {x^2}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )}+\frac {2}{x \log (x) \left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )}-\frac {2 x \log (\log (x))}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )}-\frac {\log ^2(\log (x))}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )} \, dx\right )-2 \int \frac {\log ^2(\log (x))}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )} \, dx+4 \int \frac {1}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )} \, dx+4 \int \frac {1}{x \log (x) \left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )} \, dx-4 \int \frac {x \log (\log (x))}{\left (4 x+x^2+2 x^3+4 \log (\log (x))+2 x \log (\log (x))+4 x^2 \log (\log (x))+\log ^2(\log (x))+2 x \log ^2(\log (x))\right ) \log ^2\left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 29, normalized size = 1.71 \begin {gather*} \frac {1}{\log \left (-\frac {4+x+2 x^2+\log (\log (x))+2 x \log (\log (x))}{x+\log (\log (x))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 29, normalized size = 1.71 \begin {gather*} \frac {1}{\log \left (-\frac {2 \, x^{2} + {\left (2 \, x + 1\right )} \log \left (\log \relax (x)\right ) + x + 4}{x + \log \left (\log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.88, size = 33, normalized size = 1.94 \begin {gather*} \frac {1}{\log \left (-2 \, x^{2} - 2 \, x \log \left (\log \relax (x)\right ) - x - \log \left (\log \relax (x)\right ) - 4\right ) - \log \left (x + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.17, size = 269, normalized size = 15.82
method | result | size |
risch | \(-\frac {2 i}{-2 \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )}{\ln \left (\ln \relax (x )\right )+x}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \relax (x )\right )+x}\right ) \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )}{\ln \left (\ln \relax (x )\right )+x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \relax (x )\right )+x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )}{\ln \left (\ln \relax (x )\right )+x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )}{\ln \left (\ln \relax (x )\right )+x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )}{\ln \left (\ln \relax (x )\right )+x}\right )^{3}+2 \pi -2 i \ln \relax (2)+2 i \ln \left (\ln \left (\ln \relax (x )\right )+x \right )-2 i \ln \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {1}{2}\right ) x +\frac {\ln \left (\ln \relax (x )\right )}{2}+2\right )}\) | \(269\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 32, normalized size = 1.88 \begin {gather*} \frac {1}{\log \left (-2 \, x^{2} - {\left (2 \, x + 1\right )} \log \left (\log \relax (x)\right ) - x - 4\right ) - \log \left (x + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.83, size = 29, normalized size = 1.71 \begin {gather*} \frac {1}{\ln \left (-\frac {x+2\,x^2+\ln \left (\ln \relax (x)\right )\,\left (2\,x+1\right )+4}{x+\ln \left (\ln \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.38, size = 29, normalized size = 1.71 \begin {gather*} \frac {1}{\log {\left (\frac {- 2 x^{2} - x + \left (- 2 x - 1\right ) \log {\left (\log {\relax (x )} \right )} - 4}{x + \log {\left (\log {\relax (x )} \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________