Optimal. Leaf size=11 \[ \log ^2\left (-3+\frac {\log (4)}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 11, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {12, 1593, 2480, 2475, 2412, 2390, 2301} \begin {gather*} \log ^2\left (\frac {\log (4)}{x^2}-3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2301
Rule 2390
Rule 2412
Rule 2475
Rule 2480
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((4 \log (4)) \int \frac {\log \left (\frac {-3 x^2+\log (4)}{x^2}\right )}{-3 x^3+x \log (4)} \, dx\right )\\ &=-\left ((4 \log (4)) \int \frac {\log \left (\frac {-3 x^2+\log (4)}{x^2}\right )}{x \left (-3 x^2+\log (4)\right )} \, dx\right )\\ &=-\left ((4 \log (4)) \int \frac {\log \left (-3+\frac {\log (4)}{x^2}\right )}{x \left (-3 x^2+\log (4)\right )} \, dx\right )\\ &=(2 \log (4)) \operatorname {Subst}\left (\int \frac {\log (-3+x \log (4))}{x \left (-\frac {3}{x}+\log (4)\right )} \, dx,x,\frac {1}{x^2}\right )\\ &=(2 \log (4)) \operatorname {Subst}\left (\int \frac {\log (-3+x \log (4))}{-3+x \log (4)} \, dx,x,\frac {1}{x^2}\right )\\ &=2 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-3+\frac {\log (4)}{x^2}\right )\\ &=\log ^2\left (-3+\frac {\log (4)}{x^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.20, size = 290, normalized size = 26.36 \begin {gather*} \frac {24 \log (4) \log (64) \log (x) \log (\log (4))+2 \log ^2(64) \log \left (\frac {\log (4)}{3 x^2}\right ) \log \left (-3+\frac {\log (4)}{x^2}\right )+6 \log (4) \log (64) \log \left (-3+\frac {\log (4)}{x^2}\right ) \log \left (\log (4)-x \sqrt {\log (64)}\right )-18 \log ^2(4) \log (\log (16)) \log \left (\log (4)-x \sqrt {\log (64)}\right )-9 \log ^2(4) \log ^2\left (\log (4)-x \sqrt {\log (64)}\right )+6 \log (4) \log (64) \log \left (-3+\frac {\log (4)}{x^2}\right ) \log \left (\log (4)+x \sqrt {\log (64)}\right )-18 \log ^2(4) \log (\log (16)) \log \left (\log (4)+x \sqrt {\log (64)}\right )-9 \log ^2(4) \log ^2\left (\log (4)+x \sqrt {\log (64)}\right )+2 \log ^2(64) \text {Li}_2\left (1-\frac {\log (4)}{3 x^2}\right )+18 \log ^2(4) \text {Li}_2\left (\frac {\log (4)-x \sqrt {\log (64)}}{\log (16)}\right )+18 \log ^2(4) \text {Li}_2\left (\frac {\log (4)+x \sqrt {\log (64)}}{\log (16)}\right )-12 \log (4) \log (64) \text {Li}_2\left (-\frac {x \sqrt {\log (64)}}{\log (4)}\right )-12 \log (4) \log (64) \text {Li}_2\left (\frac {x \sqrt {\log (64)}}{\log (4)}\right )}{\log ^2(64)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 18, normalized size = 1.64 \begin {gather*} \log \left (-\frac {3 \, x^{2} - 2 \, \log \relax (2)}{x^{2}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.55, size = 71, normalized size = 6.45 \begin {gather*} {\left (2 \, {\left (\frac {\log \left (3 \, x^{2} - 2 \, \log \relax (2)\right )}{\log \relax (2)} - \frac {2 \, \log \relax (x)}{\log \relax (2)}\right )} \log \left (-3 \, x^{2} + 2 \, \log \relax (2)\right ) - \frac {\log \left (3 \, x^{2} - 2 \, \log \relax (2)\right )^{2}}{\log \relax (2)} + \frac {4 \, \log \relax (x)^{2}}{\log \relax (2)}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.56, size = 13, normalized size = 1.18
method | result | size |
derivativedivides | \(\ln \left (\frac {2 \ln \relax (2)}{x^{2}}-3\right )^{2}\) | \(13\) |
default | \(\ln \left (\frac {2 \ln \relax (2)}{x^{2}}-3\right )^{2}\) | \(13\) |
risch | \(\ln \left (\frac {2 \ln \relax (2)}{x^{2}}-3\right )^{2}\) | \(13\) |
norman | \(\ln \left (\frac {2 \ln \relax (2)-3 x^{2}}{x^{2}}\right )^{2}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 82, normalized size = 7.45 \begin {gather*} 2 \, {\left (\frac {\log \left (3 \, x^{2} - 2 \, \log \relax (2)\right )}{\log \relax (2)} - \frac {2 \, \log \relax (x)}{\log \relax (2)}\right )} \log \relax (2) \log \left (-\frac {3 \, x^{2} - 2 \, \log \relax (2)}{x^{2}}\right ) - \log \left (3 \, x^{2} - 2 \, \log \relax (2)\right )^{2} + 4 \, \log \left (3 \, x^{2} - 2 \, \log \relax (2)\right ) \log \relax (x) - 4 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.83, size = 17, normalized size = 1.55 \begin {gather*} {\ln \left (\frac {2\,\ln \relax (2)-3\,x^2}{x^2}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 1.36 \begin {gather*} \log {\left (\frac {- 3 x^{2} + 2 \log {\relax (2 )}}{x^{2}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________