Optimal. Leaf size=25 \[ e^{e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 18.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (16-8 x-7 x^2+2 x^3+x^4\right )\right ) \left (-16 x^7-28 x^8+12 x^9+8 x^{10}+e^{1+x} \left (-96+64 x+34 x^2-19 x^3-4 x^4+x^5\right )\right )}{2 x^7} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (16-8 x-7 x^2+2 x^3+x^4\right )\right ) \left (-16 x^7-28 x^8+12 x^9+8 x^{10}+e^{1+x} \left (-96+64 x+34 x^2-19 x^3-4 x^4+x^5\right )\right )}{x^7} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (16-8 x-7 x^2+2 x^3+x^4\right )\right ) \left (4-x-x^2\right ) \left (-24 e^{1+x}+10 e^{1+x} x+5 e^{1+x} x^2-e^{1+x} x^3-4 x^7-8 x^8\right )}{x^7} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) \left (4-x-x^2\right ) \left (-4 x^7 (1+2 x)-e^{1+x} \left (24-10 x-5 x^2+x^3\right )\right )}{x^7} \, dx\\ &=\frac {1}{2} \int \left (4 \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) (1+2 x) \left (-4+x+x^2\right )+\frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) (-6+x) \left (-4+x+x^2\right )^2}{x^7}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) (-6+x) \left (-4+x+x^2\right )^2}{x^7} \, dx+2 \int \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) (1+2 x) \left (-4+x+x^2\right ) \, dx\\ &=\frac {1}{2} \int \left (-\frac {96 \exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^7}+\frac {64 \exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^6}+\frac {34 \exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^5}-\frac {19 \exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^4}-\frac {4 \exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^3}+\frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^2}\right ) \, dx+2 \int \left (-4 \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )-7 \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) x+3 \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) x^2+2 \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) x^3\right ) \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^2} \, dx-2 \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^3} \, dx+4 \int \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) x^3 \, dx+6 \int \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) x^2 \, dx-8 \int \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) \, dx-\frac {19}{2} \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^4} \, dx-14 \int \exp \left (\frac {e^{1+x}}{2 x^6}+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right ) x \, dx+17 \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^5} \, dx+32 \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^6} \, dx-48 \int \frac {\exp \left (1+\frac {e^{1+x}}{2 x^6}+x+e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2\right )}{x^7} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.36, size = 25, normalized size = 1.00 \begin {gather*} e^{e^{\frac {e^{1+x}}{2 x^6}} \left (-4+x+x^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 57, normalized size = 2.28 \begin {gather*} e^{\left (\frac {2 \, {\left (x^{10} + 2 \, x^{9} - 7 \, x^{8} - 8 \, x^{7} + 16 \, x^{6}\right )} e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} + e^{\left (x + 1\right )}}{2 \, x^{6}} - \frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (8 \, x^{10} + 12 \, x^{9} - 28 \, x^{8} - 16 \, x^{7} + {\left (x^{5} - 4 \, x^{4} - 19 \, x^{3} + 34 \, x^{2} + 64 \, x - 96\right )} e^{\left (x + 1\right )}\right )} e^{\left ({\left (x^{4} + 2 \, x^{3} - 7 \, x^{2} - 8 \, x + 16\right )} e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} + \frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )}}{2 \, x^{7}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 21, normalized size = 0.84
method | result | size |
risch | \({\mathrm e}^{\left (x^{2}+x -4\right )^{2} {\mathrm e}^{\frac {{\mathrm e}^{x +1}}{2 x^{6}}}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.92, size = 71, normalized size = 2.84 \begin {gather*} e^{\left (x^{4} e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} + 2 \, x^{3} e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} - 7 \, x^{2} e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} - 8 \, x e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )} + 16 \, e^{\left (\frac {e^{\left (x + 1\right )}}{2 \, x^{6}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.57, size = 75, normalized size = 3.00 \begin {gather*} {\mathrm {e}}^{-8\,x\,{\mathrm {e}}^{\frac {\mathrm {e}\,{\mathrm {e}}^x}{2\,x^6}}}\,{\mathrm {e}}^{x^4\,{\mathrm {e}}^{\frac {\mathrm {e}\,{\mathrm {e}}^x}{2\,x^6}}}\,{\mathrm {e}}^{2\,x^3\,{\mathrm {e}}^{\frac {\mathrm {e}\,{\mathrm {e}}^x}{2\,x^6}}}\,{\mathrm {e}}^{-7\,x^2\,{\mathrm {e}}^{\frac {\mathrm {e}\,{\mathrm {e}}^x}{2\,x^6}}}\,{\mathrm {e}}^{16\,{\mathrm {e}}^{\frac {\mathrm {e}\,{\mathrm {e}}^x}{2\,x^6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.58, size = 31, normalized size = 1.24 \begin {gather*} e^{\left (x^{4} + 2 x^{3} - 7 x^{2} - 8 x + 16\right ) e^{\frac {e^{x + 1}}{2 x^{6}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________