Optimal. Leaf size=34 \[ 2+\frac {2}{4+x^2-\frac {\left (-x+\log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}{x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 3.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x^2+\left (4 x^2-4 x^5\right ) \log (x)+\left (8 x+\left (-4 x+4 x^2\right ) \log (x)\right ) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-4 x \log (x) \log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\left (9 x^4+6 x^6+x^8\right ) \log (x)+\left (12 x^3+4 x^5\right ) \log (x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\left (-2 x^2-2 x^4\right ) \log (x) \log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )-4 x \log (x) \log ^3\left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\log (x) \log ^4\left (\frac {3 \log (5) \log ^2(x)}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (-2 \left (x-\log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )-\log (x) \left (x \left (-1+x^3\right )-(-1+x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )\right )}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx\\ &=4 \int \frac {x \left (-2 \left (x-\log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )-\log (x) \left (x \left (-1+x^3\right )-(-1+x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )\right )}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx\\ &=4 \int \left (-\frac {x \left (2 x-x \log (x)+3 x^2 \log (x)+2 x^4 \log (x)-2 \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\log (x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+x \log (x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}+\frac {x}{3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )}\right ) \, dx\\ &=-\left (4 \int \frac {x \left (2 x-x \log (x)+3 x^2 \log (x)+2 x^4 \log (x)-2 \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\log (x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+x \log (x) \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx\right )+4 \int \frac {x}{3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )} \, dx\\ &=4 \int \frac {x}{3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )} \, dx-4 \int \left (-\frac {x^2}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}+\frac {3 x^3}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}+\frac {2 x^5}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}+\frac {2 x^2}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}+\frac {x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}+\frac {x^2 \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}-\frac {2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2}\right ) \, dx\\ &=4 \int \frac {x^2}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx-4 \int \frac {x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx-4 \int \frac {x^2 \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx+4 \int \frac {x}{3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )} \, dx-8 \int \frac {x^5}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx-8 \int \frac {x^2}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx+8 \int \frac {x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )}{\log (x) \left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx-12 \int \frac {x^3}{\left (3 x^2+x^4+2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )-\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 47, normalized size = 1.38 \begin {gather*} -\frac {2 x^2}{-3 x^2-x^4-2 x \log \left (\frac {3 \log (5) \log ^2(x)}{x}\right )+\log ^2\left (\frac {3 \log (5) \log ^2(x)}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 47, normalized size = 1.38 \begin {gather*} \frac {2 \, x^{2}}{x^{4} + 3 \, x^{2} + 2 \, x \log \left (\frac {3 \, \log \relax (5) \log \relax (x)^{2}}{x}\right ) - \log \left (\frac {3 \, \log \relax (5) \log \relax (x)^{2}}{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.11, size = 65, normalized size = 1.91 \begin {gather*} \frac {2 \, x^{2}}{x^{4} + 3 \, x^{2} + 2 \, x \log \left (3 \, \log \relax (5) \log \relax (x)^{2}\right ) - \log \left (3 \, \log \relax (5) \log \relax (x)^{2}\right )^{2} - 2 \, x \log \relax (x) + 2 \, \log \left (3 \, \log \relax (5) \log \relax (x)^{2}\right ) \log \relax (x) - \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 22.81, size = 1723, normalized size = 50.68
method | result | size |
risch | \(\text {Expression too large to display}\) | \(1723\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.78, size = 91, normalized size = 2.68 \begin {gather*} \frac {2 \, x^{2}}{x^{4} + 3 \, x^{2} + 2 \, x {\left (\log \relax (3) + \log \left (\log \relax (5)\right )\right )} - \log \relax (3)^{2} - 2 \, {\left (x - \log \relax (3) - \log \left (\log \relax (5)\right )\right )} \log \relax (x) - \log \relax (x)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (5)\right ) - \log \left (\log \relax (5)\right )^{2} + 4 \, {\left (x - \log \relax (3) + \log \relax (x) - \log \left (\log \relax (5)\right )\right )} \log \left (\log \relax (x)\right ) - 4 \, \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \relax (x)\,\left (4\,x^2-4\,x^5\right )+\ln \left (\frac {3\,\ln \relax (5)\,{\ln \relax (x)}^2}{x}\right )\,\left (8\,x-\ln \relax (x)\,\left (4\,x-4\,x^2\right )\right )-8\,x^2-4\,x\,{\ln \left (\frac {3\,\ln \relax (5)\,{\ln \relax (x)}^2}{x}\right )}^2\,\ln \relax (x)}{\ln \relax (x)\,{\ln \left (\frac {3\,\ln \relax (5)\,{\ln \relax (x)}^2}{x}\right )}^4-4\,x\,\ln \relax (x)\,{\ln \left (\frac {3\,\ln \relax (5)\,{\ln \relax (x)}^2}{x}\right )}^3-\ln \relax (x)\,\left (2\,x^4+2\,x^2\right )\,{\ln \left (\frac {3\,\ln \relax (5)\,{\ln \relax (x)}^2}{x}\right )}^2+\ln \relax (x)\,\left (4\,x^5+12\,x^3\right )\,\ln \left (\frac {3\,\ln \relax (5)\,{\ln \relax (x)}^2}{x}\right )+\ln \relax (x)\,\left (x^8+6\,x^6+9\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 46, normalized size = 1.35 \begin {gather*} - \frac {2 x^{2}}{- x^{4} - 3 x^{2} - 2 x \log {\left (\frac {3 \log {\relax (5 )} \log {\relax (x )}^{2}}{x} \right )} + \log {\left (\frac {3 \log {\relax (5 )} \log {\relax (x )}^{2}}{x} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________