Optimal. Leaf size=21 \[ e^2 \left (x+\frac {e x}{3-x}+\log (\log (3+x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 27, normalized size of antiderivative = 1.29, number of steps used = 7, number of rules used = 6, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {1593, 6688, 12, 2390, 2302, 29} \begin {gather*} e^2 x+\frac {3 e^3}{3-x}+e^2 \log (\log (x+3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 1593
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 \left (-3 x+x^2\right )-\frac {e^3 (-9-3 x) x \log (3+x)}{-3+x}+e^2 \left (-9 x+x^3\right ) \log (3+x)}{x \left (-9+x^2\right ) \log (3+x)} \, dx\\ &=\int e^2 \left (1+\frac {3 e}{(-3+x)^2}+\frac {1}{(3+x) \log (3+x)}\right ) \, dx\\ &=e^2 \int \left (1+\frac {3 e}{(-3+x)^2}+\frac {1}{(3+x) \log (3+x)}\right ) \, dx\\ &=\frac {3 e^3}{3-x}+e^2 x+e^2 \int \frac {1}{(3+x) \log (3+x)} \, dx\\ &=\frac {3 e^3}{3-x}+e^2 x+e^2 \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,3+x\right )\\ &=\frac {3 e^3}{3-x}+e^2 x+e^2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (3+x)\right )\\ &=\frac {3 e^3}{3-x}+e^2 x+e^2 \log (\log (3+x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 0.90 \begin {gather*} e^2 \left (-\frac {3 e}{-3+x}+x+\log (\log (3+x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 32, normalized size = 1.52 \begin {gather*} \frac {{\left (x - 3\right )} e^{2} \log \left (\log \left (x + 3\right )\right ) + {\left (x^{2} - 3 \, x\right )} e^{2} - 3 \, e^{3}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 40, normalized size = 1.90 \begin {gather*} \frac {x^{2} e^{2} + x e^{2} \log \left (\log \left (x + 3\right )\right ) - 3 \, x e^{2} - 3 \, e^{2} \log \left (\log \left (x + 3\right )\right ) - 3 \, e^{3}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 25, normalized size = 1.19
method | result | size |
default | \({\mathrm e}^{2} \ln \left (\ln \left (3+x \right )\right )-\frac {3 \,{\mathrm e}^{2} {\mathrm e}}{x -3}+{\mathrm e}^{2} x\) | \(25\) |
norman | \(\frac {x^{2} {\mathrm e}^{2}-9 \,{\mathrm e}^{2}-3 \,{\mathrm e} \,{\mathrm e}^{2}}{x -3}+{\mathrm e}^{2} \ln \left (\ln \left (3+x \right )\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 31, normalized size = 1.48 \begin {gather*} e^{2} \log \left (\log \left (x + 3\right )\right ) + \frac {x^{2} e^{2} - 3 \, x e^{2} - 3 \, e^{3}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.54, size = 20, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^2\,\left (x+\ln \left (\ln \left (x+3\right )\right )\right )-\frac {3\,{\mathrm {e}}^3}{x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 22, normalized size = 1.05 \begin {gather*} x e^{2} + e^{2} \log {\left (\log {\left (x + 3 \right )} \right )} - \frac {3 e^{3}}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________