Optimal. Leaf size=24 \[ x \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+x (5+x)\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.66, antiderivative size = 29, normalized size of antiderivative = 1.21, number of steps used = 14, number of rules used = 3, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6742, 6688, 2548} \begin {gather*} x \log \left (-\frac {5}{2 x^3 \left (-x^2-5 x-e^{e^x}+2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2548
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2}+\frac {6-3 e^{e^x}-20 x-5 x^2-2 \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )+e^{e^x} \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )+5 x \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )+x^2 \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )}{-2+e^{e^x}+5 x+x^2}\right ) \, dx\\ &=-\int \frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \frac {6-3 e^{e^x}-20 x-5 x^2-2 \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )+e^{e^x} \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )+5 x \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )+x^2 \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )}{-2+e^{e^x}+5 x+x^2} \, dx\\ &=-\int \frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \frac {-6+3 e^{e^x}+20 x+5 x^2-\left (-2+e^{e^x}+5 x+x^2\right ) \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )}{2-e^{e^x}-5 x-x^2} \, dx\\ &=-\int \frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \left (-3-\frac {x (5+2 x)}{-2+e^{e^x}+5 x+x^2}+\log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right )\right ) \, dx\\ &=-3 x-\int \frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2} \, dx-\int \frac {x (5+2 x)}{-2+e^{e^x}+5 x+x^2} \, dx+\int \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right ) \, dx\\ &=-3 x+x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )-\int \frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2} \, dx-\int \frac {-6+3 e^{e^x}+20 x+e^{e^x+x} x+5 x^2}{2-e^{e^x}-5 x-x^2} \, dx-\int \left (\frac {5 x}{-2+e^{e^x}+5 x+x^2}+\frac {2 x^2}{-2+e^{e^x}+5 x+x^2}\right ) \, dx\\ &=-3 x+x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )-2 \int \frac {x^2}{-2+e^{e^x}+5 x+x^2} \, dx-5 \int \frac {x}{-2+e^{e^x}+5 x+x^2} \, dx-\int \frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2} \, dx-\int \left (-\frac {e^{e^x+x} x}{-2+e^{e^x}+5 x+x^2}-\frac {-6+3 e^{e^x}+20 x+5 x^2}{-2+e^{e^x}+5 x+x^2}\right ) \, dx\\ &=-3 x+x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )-2 \int \frac {x^2}{-2+e^{e^x}+5 x+x^2} \, dx-5 \int \frac {x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \frac {-6+3 e^{e^x}+20 x+5 x^2}{-2+e^{e^x}+5 x+x^2} \, dx\\ &=-3 x+x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )-2 \int \frac {x^2}{-2+e^{e^x}+5 x+x^2} \, dx-5 \int \frac {x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \left (3+\frac {x (5+2 x)}{-2+e^{e^x}+5 x+x^2}\right ) \, dx\\ &=x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )-2 \int \frac {x^2}{-2+e^{e^x}+5 x+x^2} \, dx-5 \int \frac {x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \frac {x (5+2 x)}{-2+e^{e^x}+5 x+x^2} \, dx\\ &=x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )-2 \int \frac {x^2}{-2+e^{e^x}+5 x+x^2} \, dx-5 \int \frac {x}{-2+e^{e^x}+5 x+x^2} \, dx+\int \left (\frac {5 x}{-2+e^{e^x}+5 x+x^2}+\frac {2 x^2}{-2+e^{e^x}+5 x+x^2}\right ) \, dx\\ &=x \log \left (-\frac {5}{2 x^3 \left (2-e^{e^x}-5 x-x^2\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 25, normalized size = 1.04 \begin {gather*} x \log \left (\frac {5}{2 x^3 \left (-2+e^{e^x}+5 x+x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 28, normalized size = 1.17 \begin {gather*} x \log \left (\frac {5}{2 \, {\left (x^{5} + 5 \, x^{4} + x^{3} e^{\left (e^{x}\right )} - 2 \, x^{3}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 39, normalized size = 1.62 \begin {gather*} x \log \left (\frac {5 \, e^{x}}{2 \, {\left (x^{5} e^{x} + 5 \, x^{4} e^{x} + x^{3} e^{\left (x + e^{x}\right )} - 2 \, x^{3} e^{x}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.48, size = 315, normalized size = 13.12
method | result | size |
risch | \(-x \ln \left ({\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2\right )-3 x \ln \relax (x )-i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{3}}\right ) \mathrm {csgn}\left (\frac {i}{x^{3} \left ({\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2\right )}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2}\right ) \mathrm {csgn}\left (\frac {i}{x^{3} \left ({\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2\right )}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )}{2}+\frac {i \pi x \mathrm {csgn}\left (i x^{3}\right )^{3}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i}{x^{3} \left ({\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2\right )}\right )^{3}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{3}}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2}\right ) \mathrm {csgn}\left (\frac {i}{x^{3} \left ({\mathrm e}^{{\mathrm e}^{x}}+x^{2}+5 x -2\right )}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}}{2}+x \ln \relax (5)-x \ln \relax (2)\) | \(315\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 30, normalized size = 1.25 \begin {gather*} x {\left (\log \relax (5) - \log \relax (2)\right )} - x \log \left (x^{2} + 5 \, x + e^{\left (e^{x}\right )} - 2\right ) - 3 \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.51, size = 32, normalized size = 1.33 \begin {gather*} x\,\left (\ln \left (\frac {1}{2\,x^3\,{\mathrm {e}}^{{\mathrm {e}}^x}-4\,x^3+10\,x^4+2\,x^5}\right )+\ln \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.22, size = 29, normalized size = 1.21 \begin {gather*} x \log {\left (\frac {5}{2 x^{5} + 10 x^{4} + 2 x^{3} e^{e^{x}} - 4 x^{3}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________