Optimal. Leaf size=28 \[ 2 x \left (2+e^x+\frac {x}{-1+e^4-e^{-5+x^2}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 13.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8-8 e^{12}+e^8 (24-16 x)-16 x+6 x^2+e^4 \left (-24+32 x-6 x^2\right )+e^{-15+3 x^2} \left (8+e^{2 x} (2+4 x)+e^x (8+8 x)\right )+e^{2 x} \left (2+e^4 (-6-12 x)+e^{12} (-2-4 x)+4 x+e^8 (6+12 x)\right )+e^x \left (8+e^{12} (-8-8 x)-4 x^2+e^8 \left (24+16 x-4 x^2\right )+e^4 \left (-24-8 x+8 x^2\right )\right )+e^{-10+2 x^2} \left (24-24 e^4-16 x+16 x^3+e^{2 x} \left (6+e^4 (-6-12 x)+12 x\right )+e^x \left (24+e^4 (-24-24 x)+16 x-4 x^2+8 x^3\right )\right )+e^{-5+x^2} \left (24+24 e^8-32 x+6 x^2+16 x^3-8 x^4+e^4 \left (-48+32 x-16 x^3\right )+e^{2 x} \left (6+e^4 (-12-24 x)+12 x+e^8 (6+12 x)\right )+e^x \left (24+8 x-8 x^2+8 x^3+e^8 (24+24 x)+e^4 \left (-48-32 x+8 x^2-8 x^3\right )\right )\right )}{1-3 e^4+3 e^8-e^{12}+e^{-15+3 x^2}+e^{-10+2 x^2} \left (3-3 e^4\right )+e^{-5+x^2} \left (3-6 e^4+3 e^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{15} \left (8 \left (1-e^{12}\right )+e^8 (24-16 x)-16 x+6 x^2+e^4 \left (-24+32 x-6 x^2\right )+e^{-15+3 x^2} \left (8+e^{2 x} (2+4 x)+e^x (8+8 x)\right )+e^{2 x} \left (2+e^4 (-6-12 x)+e^{12} (-2-4 x)+4 x+e^8 (6+12 x)\right )+e^x \left (8+e^{12} (-8-8 x)-4 x^2+e^8 \left (24+16 x-4 x^2\right )+e^4 \left (-24-8 x+8 x^2\right )\right )+e^{-10+2 x^2} \left (24-24 e^4-16 x+16 x^3+e^{2 x} \left (6+e^4 (-6-12 x)+12 x\right )+e^x \left (24+e^4 (-24-24 x)+16 x-4 x^2+8 x^3\right )\right )+e^{-5+x^2} \left (24+24 e^8-32 x+6 x^2+16 x^3-8 x^4+e^4 \left (-48+32 x-16 x^3\right )+e^{2 x} \left (6+e^4 (-12-24 x)+12 x+e^8 (6+12 x)\right )+e^x \left (24+8 x-8 x^2+8 x^3+e^8 (24+24 x)+e^4 \left (-48-32 x+8 x^2-8 x^3\right )\right )\right )\right )}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=e^{15} \int \frac {8 \left (1-e^{12}\right )+e^8 (24-16 x)-16 x+6 x^2+e^4 \left (-24+32 x-6 x^2\right )+e^{-15+3 x^2} \left (8+e^{2 x} (2+4 x)+e^x (8+8 x)\right )+e^{2 x} \left (2+e^4 (-6-12 x)+e^{12} (-2-4 x)+4 x+e^8 (6+12 x)\right )+e^x \left (8+e^{12} (-8-8 x)-4 x^2+e^8 \left (24+16 x-4 x^2\right )+e^4 \left (-24-8 x+8 x^2\right )\right )+e^{-10+2 x^2} \left (24-24 e^4-16 x+16 x^3+e^{2 x} \left (6+e^4 (-6-12 x)+12 x\right )+e^x \left (24+e^4 (-24-24 x)+16 x-4 x^2+8 x^3\right )\right )+e^{-5+x^2} \left (24+24 e^8-32 x+6 x^2+16 x^3-8 x^4+e^4 \left (-48+32 x-16 x^3\right )+e^{2 x} \left (6+e^4 (-12-24 x)+12 x+e^8 (6+12 x)\right )+e^x \left (24+8 x-8 x^2+8 x^3+e^8 (24+24 x)+e^4 \left (-48-32 x+8 x^2-8 x^3\right )\right )\right )}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=e^{15} \int \left (\frac {8 \left (1-e^4\right ) x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3}+\frac {2 \left (2+e^x\right ) \left (2+e^x+2 e^x x\right )}{e^{15}}+\frac {2 x^2 \left (3-8 \left (1-e^4\right ) x-4 e^x \left (1-e^4\right ) x-4 x^2\right )}{e^5 \left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2}+\frac {4 x \left (-4-2 e^x-e^x x+4 x^2+2 e^x x^2\right )}{e^{10} \left (e^{x^2}+e^5 \left (1-e^4\right )\right )}\right ) \, dx\\ &=2 \int \left (2+e^x\right ) \left (2+e^x+2 e^x x\right ) \, dx+\left (4 e^5\right ) \int \frac {x \left (-4-2 e^x-e^x x+4 x^2+2 e^x x^2\right )}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (2 e^{10}\right ) \int \frac {x^2 \left (3-8 \left (1-e^4\right ) x-4 e^x \left (1-e^4\right ) x-4 x^2\right )}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=2 \int \left (4+4 e^x (1+x)+e^{2 x} (1+2 x)\right ) \, dx+\left (4 e^5\right ) \int \left (\frac {4 x}{-e^{x^2}-e^5 \left (1-e^4\right )}+\frac {2 e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )}+\frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )}+\frac {4 x^3}{e^{x^2}+e^5 \left (1-e^4\right )}+\frac {2 e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )}\right ) \, dx+\left (2 e^{10}\right ) \int \frac {x^2 \left (3+4 \left (-1+e^4\right ) \left (2+e^x\right ) x-4 x^2\right )}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=8 x+2 \int e^{2 x} (1+2 x) \, dx+8 \int e^x (1+x) \, dx+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (16 e^5\right ) \int \frac {x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (16 e^5\right ) \int \frac {x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (2 e^{10}\right ) \int \left (\frac {3 x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2}+\frac {8 \left (-1+e^4\right ) x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2}+\frac {4 e^x \left (-1+e^4\right ) x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2}-\frac {4 x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2}\right ) \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=8 x+8 e^x (1+x)+e^{2 x} (1+2 x)-2 \int e^{2 x} \, dx-8 \int e^x \, dx+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{-e^x-e^5 \left (1-e^4\right )} \, dx,x,x^2\right )+\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {x}{e^x+e^5 \left (1-e^4\right )} \, dx,x,x^2\right )+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (16 e^{10} \left (1-e^4\right )\right ) \int \frac {x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=-8 e^x-e^{2 x}+8 x+\frac {4 x^4}{1-e^4}+8 e^x (1+x)+e^{2 x} (1+2 x)+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-e^5+e^9-x\right ) x} \, dx,x,e^{x^2}\right )+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\frac {8 \operatorname {Subst}\left (\int \frac {e^x x}{e^x+e^5 \left (1-e^4\right )} \, dx,x,x^2\right )}{1-e^4}-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10} \left (1-e^4\right )\right ) \operatorname {Subst}\left (\int \frac {x}{\left (e^x+e^5 \left (1-e^4\right )\right )^2} \, dx,x,x^2\right )+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=-8 e^x-e^{2 x}+8 x+\frac {4 x^4}{1-e^4}+8 e^x (1+x)+e^{2 x} (1+2 x)-\frac {8 x^2 \log \left (1+\frac {e^{-5+x^2}}{1-e^4}\right )}{1-e^4}+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {e^x x}{\left (e^x+e^5 \left (1-e^4\right )\right )^2} \, dx,x,x^2\right )-\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {x}{e^x+e^5 \left (1-e^4\right )} \, dx,x,x^2\right )+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\frac {8 \operatorname {Subst}\left (\int \frac {1}{-e^5+e^9-x} \, dx,x,e^{x^2}\right )}{1-e^4}-\frac {8 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{x^2}\right )}{1-e^4}+\frac {8 \operatorname {Subst}\left (\int \log \left (1+\frac {e^{-5+x}}{1-e^4}\right ) \, dx,x,x^2\right )}{1-e^4}-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=-8 e^x-e^{2 x}+8 x-\frac {8 x^2}{1-e^4}-\frac {8 e^5 x^2}{e^{x^2}+e^5 \left (1-e^4\right )}+8 e^x (1+x)+e^{2 x} (1+2 x)-\frac {8 x^2 \log \left (1+\frac {e^{-5+x^2}}{1-e^4}\right )}{1-e^4}+\frac {8 \log \left (e^{x^2}+e^5 \left (1-e^4\right )\right )}{1-e^4}+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{e^x+e^5 \left (1-e^4\right )} \, dx,x,x^2\right )+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\frac {8 \operatorname {Subst}\left (\int \frac {e^x x}{e^x+e^5 \left (1-e^4\right )} \, dx,x,x^2\right )}{1-e^4}+\frac {8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{1-e^4}\right )}{x} \, dx,x,e^{-5+x^2}\right )}{1-e^4}-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=-8 e^x-e^{2 x}+8 x-\frac {8 x^2}{1-e^4}-\frac {8 e^5 x^2}{e^{x^2}+e^5 \left (1-e^4\right )}+8 e^x (1+x)+e^{2 x} (1+2 x)+\frac {8 \log \left (e^{x^2}+e^5 \left (1-e^4\right )\right )}{1-e^4}-\frac {8 \text {Li}_2\left (-\frac {e^{-5+x^2}}{1-e^4}\right )}{1-e^4}+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (e^5-e^9+x\right )} \, dx,x,e^{x^2}\right )+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\frac {8 \operatorname {Subst}\left (\int \log \left (1+\frac {e^{-5+x}}{1-e^4}\right ) \, dx,x,x^2\right )}{1-e^4}-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=-8 e^x-e^{2 x}+8 x-\frac {8 x^2}{1-e^4}-\frac {8 e^5 x^2}{e^{x^2}+e^5 \left (1-e^4\right )}+8 e^x (1+x)+e^{2 x} (1+2 x)+\frac {8 \log \left (e^{x^2}+e^5 \left (1-e^4\right )\right )}{1-e^4}-\frac {8 \text {Li}_2\left (-\frac {e^{-5+x^2}}{1-e^4}\right )}{1-e^4}+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\frac {8 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{x^2}\right )}{1-e^4}-\frac {8 \operatorname {Subst}\left (\int \frac {1}{e^5-e^9+x} \, dx,x,e^{x^2}\right )}{1-e^4}-\frac {8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{1-e^4}\right )}{x} \, dx,x,e^{-5+x^2}\right )}{1-e^4}-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ &=-8 e^x-e^{2 x}+8 x-\frac {8 e^5 x^2}{e^{x^2}+e^5 \left (1-e^4\right )}+8 e^x (1+x)+e^{2 x} (1+2 x)+\left (4 e^5\right ) \int \frac {e^x x^2}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x}{-e^{x^2}-e^5 \left (1-e^4\right )} \, dx+\left (8 e^5\right ) \int \frac {e^x x^3}{e^{x^2}+e^5 \left (1-e^4\right )} \, dx+\left (6 e^{10}\right ) \int \frac {x^2}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10}\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx-\left (8 e^{10} \left (1-e^4\right )\right ) \int \frac {e^x x^3}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^2} \, dx+\left (8 e^{15} \left (1-e^4\right )\right ) \int \frac {x^4}{\left (e^{x^2}+e^5 \left (1-e^4\right )\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.54, size = 61, normalized size = 2.18 \begin {gather*} \frac {2 \left (-2 e^9+2 e^{x^2}+e^{5+x}-e^{9+x}+e^{x+x^2}-e^5 (-2+x)\right )^2 x}{\left (e^5-e^9+e^{x^2}\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 181, normalized size = 6.46 \begin {gather*} -\frac {2 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x e^{8} + 4 \, {\left (x^{2} - 2 \, x\right )} e^{4} + {\left (x e^{\left (2 \, x\right )} + 4 \, x e^{x} + 4 \, x\right )} e^{\left (2 \, x^{2} - 10\right )} - 2 \, {\left (2 \, x^{2} + 4 \, x e^{4} + {\left (x e^{4} - x\right )} e^{\left (2 \, x\right )} + {\left (x^{2} + 4 \, x e^{4} - 4 \, x\right )} e^{x} - 4 \, x\right )} e^{\left (x^{2} - 5\right )} + {\left (x e^{8} - 2 \, x e^{4} + x\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x^{2} - 2 \, x e^{8} - {\left (x^{2} - 4 \, x\right )} e^{4} - 2 \, x\right )} e^{x} + 4 \, x\right )}}{2 \, {\left (e^{4} - 1\right )} e^{\left (x^{2} - 5\right )} - e^{8} + 2 \, e^{4} - e^{\left (2 \, x^{2} - 10\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 309, normalized size = 11.04 \begin {gather*} \frac {2 \, {\left (x^{6} e^{10} + 4 \, x^{5} e^{14} - 4 \, x^{5} e^{10} - 2 \, x^{5} e^{\left (x^{2} + x + 5\right )} - 4 \, x^{5} e^{\left (x^{2} + 5\right )} + 2 \, x^{5} e^{\left (x + 14\right )} - 2 \, x^{5} e^{\left (x + 10\right )} + 4 \, x^{4} e^{18} - 8 \, x^{4} e^{14} + 4 \, x^{4} e^{10} + 4 \, x^{4} e^{\left (2 \, x^{2}\right )} + x^{4} e^{\left (2 \, x^{2} + 2 \, x\right )} + 4 \, x^{4} e^{\left (2 \, x^{2} + x\right )} - 2 \, x^{4} e^{\left (x^{2} + 2 \, x + 9\right )} + 2 \, x^{4} e^{\left (x^{2} + 2 \, x + 5\right )} - 8 \, x^{4} e^{\left (x^{2} + x + 9\right )} + 8 \, x^{4} e^{\left (x^{2} + x + 5\right )} - 8 \, x^{4} e^{\left (x^{2} + 9\right )} + 8 \, x^{4} e^{\left (x^{2} + 5\right )} + x^{4} e^{\left (2 \, x + 18\right )} - 2 \, x^{4} e^{\left (2 \, x + 14\right )} + x^{4} e^{\left (2 \, x + 10\right )} + 4 \, x^{4} e^{\left (x + 18\right )} - 8 \, x^{4} e^{\left (x + 14\right )} + 4 \, x^{4} e^{\left (x + 10\right )}\right )}}{x^{3} e^{18} - 2 \, x^{3} e^{14} + x^{3} e^{10} + x^{3} e^{\left (2 \, x^{2}\right )} - 2 \, x^{3} e^{\left (x^{2} + 9\right )} + 2 \, x^{3} e^{\left (x^{2} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 70, normalized size = 2.50
method | result | size |
risch | \(2 x \,{\mathrm e}^{2 x}+8 \,{\mathrm e}^{x} x +8 x +\frac {2 \left (2 \,{\mathrm e}^{4+x}-2 \,{\mathrm e}^{x^{2}+x -5}+4 \,{\mathrm e}^{4}+x -2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{x^{2}-5}-4\right ) x^{2}}{\left ({\mathrm e}^{4}-1-{\mathrm e}^{x^{2}-5}\right )^{2}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 191, normalized size = 6.82 \begin {gather*} -\frac {2 \, {\left (x^{3} e^{10} + 4 \, x^{2} {\left (e^{14} - e^{10}\right )} + x {\left (e^{18} - 2 \, e^{14} + e^{10}\right )} e^{\left (2 \, x\right )} + 4 \, x {\left (e^{18} - 2 \, e^{14} + e^{10}\right )} + {\left (x e^{\left (2 \, x\right )} + 4 \, x e^{x} + 4 \, x\right )} e^{\left (2 \, x^{2}\right )} - 2 \, {\left (2 \, x^{2} e^{5} + x {\left (e^{9} - e^{5}\right )} e^{\left (2 \, x\right )} + 4 \, x {\left (e^{9} - e^{5}\right )} + {\left (x^{2} e^{5} + 4 \, x {\left (e^{9} - e^{5}\right )}\right )} e^{x}\right )} e^{\left (x^{2}\right )} + 2 \, {\left (x^{2} {\left (e^{14} - e^{10}\right )} + 2 \, x {\left (e^{18} - 2 \, e^{14} + e^{10}\right )}\right )} e^{x}\right )}}{2 \, {\left (e^{9} - e^{5}\right )} e^{\left (x^{2}\right )} - e^{18} + 2 \, e^{14} - e^{10} - e^{\left (2 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{3\,x^2-15}\,\left ({\mathrm {e}}^x\,\left (8\,x+8\right )+{\mathrm {e}}^{2\,x}\,\left (4\,x+2\right )+8\right )-8\,{\mathrm {e}}^{12}-16\,x-{\mathrm {e}}^4\,\left (6\,x^2-32\,x+24\right )-{\mathrm {e}}^x\,\left ({\mathrm {e}}^4\,\left (-8\,x^2+8\,x+24\right )-{\mathrm {e}}^8\,\left (-4\,x^2+16\,x+24\right )+4\,x^2+{\mathrm {e}}^{12}\,\left (8\,x+8\right )-8\right )+{\mathrm {e}}^{2\,x^2-10}\,\left ({\mathrm {e}}^{2\,x}\,\left (12\,x-{\mathrm {e}}^4\,\left (12\,x+6\right )+6\right )-24\,{\mathrm {e}}^4-16\,x+16\,x^3+{\mathrm {e}}^x\,\left (16\,x-4\,x^2+8\,x^3-{\mathrm {e}}^4\,\left (24\,x+24\right )+24\right )+24\right )+{\mathrm {e}}^{2\,x}\,\left (4\,x-{\mathrm {e}}^{12}\,\left (4\,x+2\right )-{\mathrm {e}}^4\,\left (12\,x+6\right )+{\mathrm {e}}^8\,\left (12\,x+6\right )+2\right )+6\,x^2+{\mathrm {e}}^{x^2-5}\,\left (24\,{\mathrm {e}}^8-32\,x-{\mathrm {e}}^4\,\left (16\,x^3-32\,x+48\right )+{\mathrm {e}}^x\,\left (8\,x-{\mathrm {e}}^4\,\left (8\,x^3-8\,x^2+32\,x+48\right )-8\,x^2+8\,x^3+{\mathrm {e}}^8\,\left (24\,x+24\right )+24\right )+{\mathrm {e}}^{2\,x}\,\left (12\,x+{\mathrm {e}}^8\,\left (12\,x+6\right )-{\mathrm {e}}^4\,\left (24\,x+12\right )+6\right )+6\,x^2+16\,x^3-8\,x^4+24\right )-{\mathrm {e}}^8\,\left (16\,x-24\right )+8}{3\,{\mathrm {e}}^8-3\,{\mathrm {e}}^4-{\mathrm {e}}^{12}+{\mathrm {e}}^{3\,x^2-15}-{\mathrm {e}}^{2\,x^2-10}\,\left (3\,{\mathrm {e}}^4-3\right )+{\mathrm {e}}^{x^2-5}\,\left (3\,{\mathrm {e}}^8-6\,{\mathrm {e}}^4+3\right )+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.61, size = 110, normalized size = 3.93 \begin {gather*} 2 x e^{2 x} + 8 x e^{x} + 8 x + \frac {2 x^{3} - 4 x^{2} e^{x} + 4 x^{2} e^{4} e^{x} - 8 x^{2} + 8 x^{2} e^{4} + \left (- 4 x^{2} e^{x} - 8 x^{2}\right ) e^{x^{2} - 5}}{\left (2 - 2 e^{4}\right ) e^{x^{2} - 5} + e^{2 x^{2} - 10} - 2 e^{4} + 1 + e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________