Optimal. Leaf size=24 \[ -\frac {e^{x+\frac {100}{\left (\frac {e^x}{3}+x\right )^2}}}{x}+x \]
________________________________________________________________________________________
Rubi [F] time = 19.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\frac {1}{27} e^{3 x} x^2+\frac {1}{3} e^{2 x} x^3+e^x x^4+x^5+e^{x+\frac {100}{\frac {e^{2 x}}{9}+\frac {2 e^x x}{3}+x^2}} \left (\frac {1}{27} e^{3 x} (1-x)+200 x+x^3-x^4+\frac {1}{9} e^{2 x} \left (3 x-3 x^2\right )+\frac {1}{3} e^x \left (200 x+3 x^2-3 x^3\right )\right )}{\frac {1}{27} e^{3 x} x^2+\frac {1}{3} e^{2 x} x^3+e^x x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {27 \left (\frac {1}{27} e^{3 x} x^2+\frac {1}{3} e^{2 x} x^3+e^x x^4+x^5-\frac {1}{27} e^{x+\frac {900}{\left (e^x+3 x\right )^2}} \left (e^{3 x} (-1+x)+9 e^{2 x} (-1+x) x+9 e^x x \left (-200-3 x+3 x^2\right )+27 x \left (-200-x^2+x^3\right )\right )\right )}{x^2 \left (e^x+3 x\right )^3} \, dx\\ &=27 \int \frac {\frac {1}{27} e^{3 x} x^2+\frac {1}{3} e^{2 x} x^3+e^x x^4+x^5-\frac {1}{27} e^{x+\frac {900}{\left (e^x+3 x\right )^2}} \left (e^{3 x} (-1+x)+9 e^{2 x} (-1+x) x+9 e^x x \left (-200-3 x+3 x^2\right )+27 x \left (-200-x^2+x^3\right )\right )}{x^2 \left (e^x+3 x\right )^3} \, dx\\ &=27 \int \left (\frac {e^{3 x}}{27 \left (e^x+3 x\right )^3}+\frac {e^{2 x} x}{3 \left (e^x+3 x\right )^3}+\frac {e^x x^2}{\left (e^x+3 x\right )^3}+\frac {x^3}{\left (e^x+3 x\right )^3}-\frac {e^{x+\frac {900}{\left (e^x+3 x\right )^2}} \left (-e^{3 x}-5400 x-1800 e^x x-9 e^{2 x} x+e^{3 x} x-27 e^x x^2+9 e^{2 x} x^2-27 x^3+27 e^x x^3+27 x^4\right )}{27 x^2 \left (e^x+3 x\right )^3}\right ) \, dx\\ &=9 \int \frac {e^{2 x} x}{\left (e^x+3 x\right )^3} \, dx+27 \int \frac {e^x x^2}{\left (e^x+3 x\right )^3} \, dx+27 \int \frac {x^3}{\left (e^x+3 x\right )^3} \, dx+\int \frac {e^{3 x}}{\left (e^x+3 x\right )^3} \, dx-\int \frac {e^{x+\frac {900}{\left (e^x+3 x\right )^2}} \left (-e^{3 x}-5400 x-1800 e^x x-9 e^{2 x} x+e^{3 x} x-27 e^x x^2+9 e^{2 x} x^2-27 x^3+27 e^x x^3+27 x^4\right )}{x^2 \left (e^x+3 x\right )^3} \, dx\\ &=-\frac {27 x^2}{2 \left (e^x+3 x\right )^2}+\frac {e^{x+\frac {900}{\left (e^x+3 x\right )^2}} \left (5400 x+1800 e^x x-e^{3 x} x-9 e^{2 x} x^2-27 e^x x^3-27 x^4\right )}{x^2 \left (e^x+3 x\right )^3 \left (1-\frac {1800 \left (3+e^x\right )}{\left (e^x+3 x\right )^3}\right )}+9 \int \frac {e^{2 x} x}{\left (e^x+3 x\right )^3} \, dx+27 \int \frac {x^3}{\left (e^x+3 x\right )^3} \, dx+27 \int \frac {x}{\left (e^x+3 x\right )^2} \, dx-81 \int \frac {x^2}{\left (e^x+3 x\right )^3} \, dx+\int \frac {e^{3 x}}{\left (e^x+3 x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 30, normalized size = 1.25 \begin {gather*} 27 \left (-\frac {e^{x+\frac {900}{\left (e^x+3 x\right )^2}}}{27 x}+\frac {x}{27}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 65, normalized size = 2.71 \begin {gather*} \frac {x^{2} - e^{\left (\frac {x^{3} + 2 \, x^{2} e^{\left (x - \log \relax (3)\right )} + x e^{\left (2 \, x - 2 \, \log \relax (3)\right )} + 100}{x^{2} + 2 \, x e^{\left (x - \log \relax (3)\right )} + e^{\left (2 \, x - 2 \, \log \relax (3)\right )}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 49, normalized size = 2.04 \begin {gather*} \frac {x^{2} - e^{\left (\frac {9 \, x^{3} + 6 \, x^{2} e^{x} + x e^{\left (2 \, x\right )} + 900}{9 \, x^{2} + 6 \, x e^{x} + e^{\left (2 \, x\right )}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 47, normalized size = 1.96
method | result | size |
risch | \(x -\frac {{\mathrm e}^{\frac {6 \,{\mathrm e}^{x} x^{2}+9 x^{3}+x \,{\mathrm e}^{2 x}+900}{6 \,{\mathrm e}^{x} x +9 x^{2}+{\mathrm e}^{2 x}}}}{x}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \int \frac {{\left ({\left (x - 1\right )} e^{\left (4 \, x\right )} + 9 \, {\left (x^{2} - x\right )} e^{\left (3 \, x\right )} + 9 \, {\left (3 \, x^{3} - 3 \, x^{2} - 200 \, x\right )} e^{\left (2 \, x\right )} + 27 \, {\left (x^{4} - x^{3} - 200 \, x\right )} e^{x}\right )} e^{\left (\frac {900}{9 \, x^{2} + 6 \, x e^{x} + e^{\left (2 \, x\right )}}\right )}}{27 \, x^{5} + 27 \, x^{4} e^{x} + 9 \, x^{3} e^{\left (2 \, x\right )} + x^{2} e^{\left (3 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.72, size = 29, normalized size = 1.21 \begin {gather*} x-\frac {{\mathrm {e}}^{\frac {100}{\frac {{\mathrm {e}}^{2\,x}}{9}+\frac {2\,x\,{\mathrm {e}}^x}{3}+x^2}}\,{\mathrm {e}}^x}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 27, normalized size = 1.12 \begin {gather*} x - \frac {e^{x} e^{\frac {100}{x^{2} + \frac {2 x e^{x}}{3} + \frac {e^{2 x}}{9}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________