Optimal. Leaf size=27 \[ 1-2 x+\frac {1}{4} \left (-\frac {e^x}{x^2}+x+2 \left (-1+\log \left (x^4\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 20, normalized size of antiderivative = 0.74, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {12, 14, 2197, 43} \begin {gather*} -\frac {e^x}{4 x^2}-\frac {7 x}{4}+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^x (2-x)+8 x^2-7 x^3}{x^3} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^x (-2+x)}{x^3}+\frac {8-7 x}{x}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^x (-2+x)}{x^3} \, dx\right )+\frac {1}{4} \int \frac {8-7 x}{x} \, dx\\ &=-\frac {e^x}{4 x^2}+\frac {1}{4} \int \left (-7+\frac {8}{x}\right ) \, dx\\ &=-\frac {e^x}{4 x^2}-\frac {7 x}{4}+2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.74 \begin {gather*} \frac {1}{4} \left (-\frac {e^x}{x^2}-7 x+8 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 20, normalized size = 0.74 \begin {gather*} -\frac {7 \, x^{3} - 8 \, x^{2} \log \relax (x) + e^{x}}{4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 20, normalized size = 0.74 \begin {gather*} -\frac {7 \, x^{3} - 8 \, x^{2} \log \relax (x) + e^{x}}{4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.59
method | result | size |
default | \(-\frac {7 x}{4}+2 \ln \relax (x )-\frac {{\mathrm e}^{x}}{4 x^{2}}\) | \(16\) |
risch | \(-\frac {7 x}{4}+2 \ln \relax (x )-\frac {{\mathrm e}^{x}}{4 x^{2}}\) | \(16\) |
norman | \(\frac {-\frac {7 x^{3}}{4}-\frac {{\mathrm e}^{x}}{4}}{x^{2}}+2 \ln \relax (x )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.59, size = 22, normalized size = 0.81 \begin {gather*} -\frac {7}{4} \, x - \frac {1}{4} \, \Gamma \left (-1, -x\right ) - \frac {1}{2} \, \Gamma \left (-2, -x\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.67 \begin {gather*} 2\,\ln \relax (x)-\frac {{\mathrm {e}}^x+7\,x^3}{4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.63 \begin {gather*} - \frac {7 x}{4} + 2 \log {\relax (x )} - \frac {e^{x}}{4 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________