Optimal. Leaf size=20 \[ 7-\frac {4}{15} x \left (-\frac {1}{x}+x\right ) \log \left (x+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 28, normalized size of antiderivative = 1.40, number of steps used = 9, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {12, 14, 2495, 30, 43} \begin {gather*} -\frac {4}{15} x^2 \log (x (x+1))+\frac {4 \log (x)}{15}+\frac {4}{15} \log (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 30
Rule 43
Rule 2495
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{15} \int \frac {4+4 x-8 x^2-8 x^2 \log \left (x+x^2\right )}{x} \, dx\\ &=\frac {1}{15} \int \left (-\frac {4 \left (-1-x+2 x^2\right )}{x}-8 x \log (x (1+x))\right ) \, dx\\ &=-\left (\frac {4}{15} \int \frac {-1-x+2 x^2}{x} \, dx\right )-\frac {8}{15} \int x \log (x (1+x)) \, dx\\ &=-\frac {4}{15} x^2 \log (x (1+x))+\frac {4 \int x \, dx}{15}+\frac {4}{15} \int \frac {x^2}{1+x} \, dx-\frac {4}{15} \int \left (-1-\frac {1}{x}+2 x\right ) \, dx\\ &=\frac {4 x}{15}-\frac {2 x^2}{15}+\frac {4 \log (x)}{15}-\frac {4}{15} x^2 \log (x (1+x))+\frac {4}{15} \int \left (-1+x+\frac {1}{1+x}\right ) \, dx\\ &=\frac {4 \log (x)}{15}+\frac {4}{15} \log (1+x)-\frac {4}{15} x^2 \log (x (1+x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 1.25 \begin {gather*} -\frac {4}{15} \left (-\log (x)-\log (1+x)+x^2 \log (x (1+x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 13, normalized size = 0.65 \begin {gather*} -\frac {4}{15} \, {\left (x^{2} - 1\right )} \log \left (x^{2} + x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 22, normalized size = 1.10 \begin {gather*} -\frac {4}{15} \, x^{2} \log \left (x^{2} + x\right ) + \frac {4}{15} \, \log \left (x + 1\right ) + \frac {4}{15} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 1.05
method | result | size |
norman | \(-\frac {4 x^{2} \ln \left (x^{2}+x \right )}{15}+\frac {4 \ln \left (x^{2}+x \right )}{15}\) | \(21\) |
risch | \(-\frac {4 x^{2} \ln \left (x^{2}+x \right )}{15}+\frac {4 \ln \left (x^{2}+x \right )}{15}\) | \(21\) |
default | \(\frac {4 \ln \relax (x )}{15}-\frac {4 x^{2} \ln \left (x^{2}+x \right )}{15}+\frac {4 \ln \left (x +1\right )}{15}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 22, normalized size = 1.10 \begin {gather*} -\frac {4}{15} \, x^{2} \log \left (x^{2} + x\right ) + \frac {4}{15} \, \log \left (x + 1\right ) + \frac {4}{15} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.47, size = 13, normalized size = 0.65 \begin {gather*} -\frac {4\,\ln \left (x^2+x\right )\,\left (x^2-1\right )}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 1.10 \begin {gather*} - \frac {4 x^{2} \log {\left (x^{2} + x \right )}}{15} + \frac {4 \log {\left (x^{2} + x \right )}}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________