Optimal. Leaf size=32 \[ x+e^x \left (-x+2 x^2 \left (e^2-3 \left (\frac {3}{x}+x\right )^2\right )+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.62, antiderivative size = 85, normalized size of antiderivative = 2.66, number of steps used = 24, number of rules used = 7, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.123, Rules used = {14, 6742, 2199, 2194, 2178, 2176, 2554} \begin {gather*} -6 e^x x^4-2 \left (18-e^2\right ) e^x x^2+4 \left (18-e^2\right ) e^x x-\left (73-4 e^2\right ) e^x x+x-55 e^x-4 \left (18-e^2\right ) e^x+\left (73-4 e^2\right ) e^x+e^x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {e^x \left (1-55 x-73 \left (1-\frac {4 e^2}{73}\right ) x^2-36 \left (1-\frac {e^2}{18}\right ) x^3-24 x^4-6 x^5+x \log (x)\right )}{x}\right ) \, dx\\ &=x+\int \frac {e^x \left (1-55 x-73 \left (1-\frac {4 e^2}{73}\right ) x^2-36 \left (1-\frac {e^2}{18}\right ) x^3-24 x^4-6 x^5+x \log (x)\right )}{x} \, dx\\ &=x+\int \left (\frac {e^x \left (1-55 x-73 \left (1-\frac {4 e^2}{73}\right ) x^2-36 \left (1-\frac {e^2}{18}\right ) x^3-24 x^4-6 x^5\right )}{x}+e^x \log (x)\right ) \, dx\\ &=x+\int \frac {e^x \left (1-55 x-73 \left (1-\frac {4 e^2}{73}\right ) x^2-36 \left (1-\frac {e^2}{18}\right ) x^3-24 x^4-6 x^5\right )}{x} \, dx+\int e^x \log (x) \, dx\\ &=x+e^x \log (x)-\int \frac {e^x}{x} \, dx+\int \left (-55 e^x+\frac {e^x}{x}-e^x \left (73-4 e^2\right ) x-2 e^x \left (18-e^2\right ) x^2-24 e^x x^3-6 e^x x^4\right ) \, dx\\ &=x-\text {Ei}(x)+e^x \log (x)-6 \int e^x x^4 \, dx-24 \int e^x x^3 \, dx-55 \int e^x \, dx-\left (2 \left (18-e^2\right )\right ) \int e^x x^2 \, dx+\left (-73+4 e^2\right ) \int e^x x \, dx+\int \frac {e^x}{x} \, dx\\ &=-55 e^x+x-e^x \left (73-4 e^2\right ) x-2 e^x \left (18-e^2\right ) x^2-24 e^x x^3-6 e^x x^4+e^x \log (x)+24 \int e^x x^3 \, dx+72 \int e^x x^2 \, dx+\left (73-4 e^2\right ) \int e^x \, dx+\left (4 \left (18-e^2\right )\right ) \int e^x x \, dx\\ &=-55 e^x+e^x \left (73-4 e^2\right )+x-e^x \left (73-4 e^2\right ) x+4 e^x \left (18-e^2\right ) x+72 e^x x^2-2 e^x \left (18-e^2\right ) x^2-6 e^x x^4+e^x \log (x)-72 \int e^x x^2 \, dx-144 \int e^x x \, dx-\left (4 \left (18-e^2\right )\right ) \int e^x \, dx\\ &=-55 e^x+e^x \left (73-4 e^2\right )-4 e^x \left (18-e^2\right )+x-144 e^x x-e^x \left (73-4 e^2\right ) x+4 e^x \left (18-e^2\right ) x-2 e^x \left (18-e^2\right ) x^2-6 e^x x^4+e^x \log (x)+144 \int e^x \, dx+144 \int e^x x \, dx\\ &=89 e^x+e^x \left (73-4 e^2\right )-4 e^x \left (18-e^2\right )+x-e^x \left (73-4 e^2\right ) x+4 e^x \left (18-e^2\right ) x-2 e^x \left (18-e^2\right ) x^2-6 e^x x^4+e^x \log (x)-144 \int e^x \, dx\\ &=-55 e^x+e^x \left (73-4 e^2\right )-4 e^x \left (18-e^2\right )+x-e^x \left (73-4 e^2\right ) x+4 e^x \left (18-e^2\right ) x-2 e^x \left (18-e^2\right ) x^2-6 e^x x^4+e^x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 36, normalized size = 1.12 \begin {gather*} x+2 e^{2+x} x^2-e^x \left (54+x+36 x^2+6 x^4\right )+e^x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 31, normalized size = 0.97 \begin {gather*} -{\left (6 \, x^{4} - 2 \, x^{2} e^{2} + 36 \, x^{2} + x + 54\right )} e^{x} + e^{x} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 39, normalized size = 1.22 \begin {gather*} -6 \, x^{4} e^{x} + 2 \, x^{2} e^{\left (x + 2\right )} - 36 \, x^{2} e^{x} - x e^{x} + e^{x} \log \relax (x) + x - 54 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 40, normalized size = 1.25
method | result | size |
risch | \(-6 \,{\mathrm e}^{x} x^{4}+2 x^{2} {\mathrm e}^{2+x}-36 \,{\mathrm e}^{x} x^{2}-{\mathrm e}^{x} x +{\mathrm e}^{x} \ln \relax (x )+x -54 \,{\mathrm e}^{x}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 102, normalized size = 3.19 \begin {gather*} -6 \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{x} - 24 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} + 2 \, {\left (x^{2} e^{2} - 2 \, x e^{2} + 2 \, e^{2}\right )} e^{x} - 36 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} + 4 \, {\left (x e^{2} - e^{2}\right )} e^{x} - 73 \, {\left (x - 1\right )} e^{x} + e^{x} \log \relax (x) + x - 55 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.55, size = 30, normalized size = 0.94 \begin {gather*} x+{\mathrm {e}}^x\,\ln \relax (x)-{\mathrm {e}}^x\,\left (6\,x^4+\left (36-2\,{\mathrm {e}}^2\right )\,x^2+x+54\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 29, normalized size = 0.91 \begin {gather*} x + \left (- 6 x^{4} - 36 x^{2} + 2 x^{2} e^{2} - x + \log {\relax (x )} - 54\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________