Optimal. Leaf size=28 \[ \frac {1+e^2-\frac {1}{5} x \left (x+3 \left (-2+2 x^2\right )\right )}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14} \begin {gather*} -\frac {3 x^2}{5}-\frac {x}{10}+\frac {1+e^2}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \frac {-5-5 e^2-x^2-12 x^3}{x^2} \, dx\\ &=\frac {1}{10} \int \left (-1-\frac {5 \left (1+e^2\right )}{x^2}-12 x\right ) \, dx\\ &=\frac {1+e^2}{2 x}-\frac {x}{10}-\frac {3 x^2}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.82 \begin {gather*} \frac {1}{10} \left (\frac {5 \left (1+e^2\right )}{x}-x-6 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 19, normalized size = 0.68 \begin {gather*} -\frac {6 \, x^{3} + x^{2} - 5 \, e^{2} - 5}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 0.64 \begin {gather*} -\frac {3}{5} \, x^{2} - \frac {1}{10} \, x + \frac {e^{2} + 1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 0.75
method | result | size |
default | \(-\frac {3 x^{2}}{5}-\frac {x}{10}-\frac {-5-5 \,{\mathrm e}^{2}}{10 x}\) | \(21\) |
norman | \(\frac {-\frac {x^{2}}{10}-\frac {3 x^{3}}{5}+\frac {{\mathrm e}^{2}}{2}+\frac {1}{2}}{x}\) | \(21\) |
gosper | \(\frac {-6 x^{3}-x^{2}+5 \,{\mathrm e}^{2}+5}{10 x}\) | \(22\) |
risch | \(-\frac {3 x^{2}}{5}-\frac {x}{10}+\frac {{\mathrm e}^{2}}{2 x}+\frac {1}{2 x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.64 \begin {gather*} -\frac {3}{5} \, x^{2} - \frac {1}{10} \, x + \frac {e^{2} + 1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 19, normalized size = 0.68 \begin {gather*} \frac {\frac {{\mathrm {e}}^2}{2}+\frac {1}{2}}{x}-\frac {x}{10}-\frac {3\,x^2}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 22, normalized size = 0.79 \begin {gather*} - \frac {3 x^{2}}{5} - \frac {x}{10} - \frac {- 5 e^{2} - 5}{10 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________