Optimal. Leaf size=24 \[ 2-e^{-1+x}+\log \left (15 \log \left (\frac {x}{e^x-x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (1-x)+\left (-e^{-1+2 x} x+e^{-1+x} x^2\right ) \log \left (\frac {x}{e^x-x}\right )}{\left (e^x x-x^2\right ) \log \left (\frac {x}{e^x-x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{-1+x}+\frac {1-x}{x \log \left (\frac {x}{e^x-x}\right )}+\frac {-1+x}{\left (-e^x+x\right ) \log \left (\frac {x}{e^x-x}\right )}\right ) \, dx\\ &=-\int e^{-1+x} \, dx+\int \frac {1-x}{x \log \left (\frac {x}{e^x-x}\right )} \, dx+\int \frac {-1+x}{\left (-e^x+x\right ) \log \left (\frac {x}{e^x-x}\right )} \, dx\\ &=-e^{-1+x}+\int \left (-\frac {1}{\log \left (\frac {x}{e^x-x}\right )}+\frac {1}{x \log \left (\frac {x}{e^x-x}\right )}\right ) \, dx+\int \left (\frac {1}{\left (e^x-x\right ) \log \left (\frac {x}{e^x-x}\right )}-\frac {x}{\left (e^x-x\right ) \log \left (\frac {x}{e^x-x}\right )}\right ) \, dx\\ &=-e^{-1+x}-\int \frac {1}{\log \left (\frac {x}{e^x-x}\right )} \, dx+\int \frac {1}{\left (e^x-x\right ) \log \left (\frac {x}{e^x-x}\right )} \, dx+\int \frac {1}{x \log \left (\frac {x}{e^x-x}\right )} \, dx-\int \frac {x}{\left (e^x-x\right ) \log \left (\frac {x}{e^x-x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 21, normalized size = 0.88 \begin {gather*} -e^{-1+x}+\log \left (\log \left (\frac {x}{e^x-x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 24, normalized size = 1.00 \begin {gather*} {\left (e \log \left (\log \left (-\frac {x}{x - e^{x}}\right )\right ) - e^{x}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 24, normalized size = 1.00 \begin {gather*} {\left (e \log \left (\log \left (-\frac {x}{x - e^{x}}\right )\right ) - e^{x}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 22, normalized size = 0.92
method | result | size |
norman | \(-{\mathrm e}^{x} {\mathrm e}^{-1}+\ln \left (\ln \left (\frac {x}{{\mathrm e}^{x}-x}\right )\right )\) | \(22\) |
risch | \(-{\mathrm e}^{x -1}+\ln \left (\ln \left (x -{\mathrm e}^{x}\right )-\frac {i \left (-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x}-x}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (i x \right )-\pi \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x}-x}\right )^{3}-2 \pi \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x}-x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x}-x}\right )^{2} \mathrm {csgn}\left (i x \right )+2 \pi -2 i \ln \relax (x )\right )}{2}\right )\) | \(150\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 20, normalized size = 0.83 \begin {gather*} -e^{\left (x - 1\right )} + \log \left (-\log \relax (x) + \log \left (-x + e^{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.70, size = 20, normalized size = 0.83 \begin {gather*} \ln \left (\ln \left (-\frac {x}{x-{\mathrm {e}}^x}\right )\right )-{\mathrm {e}}^{x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 15, normalized size = 0.62 \begin {gather*} - \frac {e^{x}}{e} + \log {\left (\log {\left (\frac {x}{- x + e^{x}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________