Optimal. Leaf size=31 \[ \frac {e^x}{x}-\log ^{\frac {x}{3}}\left (4+x-\frac {5 x}{x-\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (3 x^2-6 x^3+3 x^4+\left (9 x-3 x^2-6 x^3\right ) \log (2)+\left (-12+9 x+3 x^2\right ) \log ^2(2)\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )+\log ^{\frac {x}{3}}\left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right ) \left (-x^5+\left (-5 x^3+2 x^4\right ) \log (2)-x^3 \log ^2(2)+\left (x^4-x^5+\left (3 x^3+2 x^4\right ) \log (2)+\left (-4 x^2-x^3\right ) \log ^2(2)\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )\right )\right )}{\left (-3 x^4+3 x^5+\left (-9 x^3-6 x^4\right ) \log (2)+\left (12 x^2+3 x^3\right ) \log ^2(2)\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x (-1+x)}{x^2}+\frac {\log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \left (-x^3+x (-5+2 x) \log (2)-x \log ^2(2)-\left (x^3+x (-3+\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )\right )\right )}{3 \left (x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \left (-x^3+x (-5+2 x) \log (2)-x \log ^2(2)-\left (x^3+x (-3+\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )\right )\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))} \, dx+\int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {e^x}{x}+\frac {1}{3} \int \left (\frac {x \left (-x^2-\log ^2(2)+x \log (4)-\log (32)\right ) \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))}-\log ^{\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )\right )\right ) \, dx\\ &=\frac {e^x}{x}+\frac {1}{3} \int \frac {x \left (-x^2-\log ^2(2)+x \log (4)-\log (32)\right ) \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))} \, dx-\frac {1}{3} \int \log ^{\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )\right ) \, dx\\ &=\frac {e^x}{x}+\frac {1}{3} \int \left (-\log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )+\frac {\left (-x^2-8 x \log (2)+4 \log ^2(2)\right ) \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))}\right ) \, dx-\frac {1}{3} \int \log ^{\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )\right ) \, dx\\ &=\frac {e^x}{x}-\frac {1}{3} \int \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \, dx+\frac {1}{3} \int \frac {\left (-x^2-8 x \log (2)+4 \log ^2(2)\right ) \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))} \, dx-\frac {1}{3} \int \log ^{\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )\right ) \, dx\\ &=\frac {e^x}{x}-\frac {1}{3} \int \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \, dx+\frac {1}{3} \int \left (\frac {4 \log ^2(2) \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))}+\frac {x^2 \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{-x^3+x (3-\log (2)) \log (2)-4 \log ^2(2)+x^2 (1+\log (4))}+\frac {8 x \log (2) \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{-x^3+x (3-\log (2)) \log (2)-4 \log ^2(2)+x^2 (1+\log (4))}\right ) \, dx-\frac {1}{3} \int \log ^{\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )\right ) \, dx\\ &=\frac {e^x}{x}-\frac {1}{3} \int \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \, dx+\frac {1}{3} \int \frac {x^2 \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{-x^3+x (3-\log (2)) \log (2)-4 \log ^2(2)+x^2 (1+\log (4))} \, dx-\frac {1}{3} \int \log ^{\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )\right ) \, dx+\frac {1}{3} (8 \log (2)) \int \frac {x \log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{-x^3+x (3-\log (2)) \log (2)-4 \log ^2(2)+x^2 (1+\log (4))} \, dx+\frac {1}{3} \left (4 \log ^2(2)\right ) \int \frac {\log ^{-1+\frac {x}{3}}\left (\frac {-x^2+x (1+\log (2))+\log (16)}{-x+\log (2)}\right )}{x^3-x (3-\log (2)) \log (2)+4 \log ^2(2)-x^2 (1+\log (4))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.94, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^x \left (3 x^2-6 x^3+3 x^4+\left (9 x-3 x^2-6 x^3\right ) \log (2)+\left (-12+9 x+3 x^2\right ) \log ^2(2)\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )+\log ^{\frac {x}{3}}\left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right ) \left (-x^5+\left (-5 x^3+2 x^4\right ) \log (2)-x^3 \log ^2(2)+\left (x^4-x^5+\left (3 x^3+2 x^4\right ) \log (2)+\left (-4 x^2-x^3\right ) \log ^2(2)\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right ) \log \left (\log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )\right )\right )}{\left (-3 x^4+3 x^5+\left (-9 x^3-6 x^4\right ) \log (2)+\left (12 x^2+3 x^3\right ) \log ^2(2)\right ) \log \left (\frac {x-x^2+(4+x) \log (2)}{-x+\log (2)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 40, normalized size = 1.29 \begin {gather*} -\frac {x \log \left (\frac {x^{2} - {\left (x + 4\right )} \log \relax (2) - x}{x - \log \relax (2)}\right )^{\frac {1}{3} \, x} - e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left (x^{4} - 2 \, x^{3} + {\left (x^{2} + 3 \, x - 4\right )} \log \relax (2)^{2} + x^{2} - {\left (2 \, x^{3} + x^{2} - 3 \, x\right )} \log \relax (2)\right )} e^{x} \log \left (\frac {x^{2} - {\left (x + 4\right )} \log \relax (2) - x}{x - \log \relax (2)}\right ) - {\left (x^{5} + x^{3} \log \relax (2)^{2} + {\left (x^{5} - x^{4} + {\left (x^{3} + 4 \, x^{2}\right )} \log \relax (2)^{2} - {\left (2 \, x^{4} + 3 \, x^{3}\right )} \log \relax (2)\right )} \log \left (\frac {x^{2} - {\left (x + 4\right )} \log \relax (2) - x}{x - \log \relax (2)}\right ) \log \left (\log \left (\frac {x^{2} - {\left (x + 4\right )} \log \relax (2) - x}{x - \log \relax (2)}\right )\right ) - {\left (2 \, x^{4} - 5 \, x^{3}\right )} \log \relax (2)\right )} \log \left (\frac {x^{2} - {\left (x + 4\right )} \log \relax (2) - x}{x - \log \relax (2)}\right )^{\frac {1}{3} \, x}}{3 \, {\left (x^{5} - x^{4} + {\left (x^{3} + 4 \, x^{2}\right )} \log \relax (2)^{2} - {\left (2 \, x^{4} + 3 \, x^{3}\right )} \log \relax (2)\right )} \log \left (\frac {x^{2} - {\left (x + 4\right )} \log \relax (2) - x}{x - \log \relax (2)}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.62, size = 152, normalized size = 4.90
method | result | size |
risch | \(\frac {{\mathrm e}^{x}}{x}-\left (-\ln \left (\ln \relax (2)-x \right )+\ln \left (\left (4+x \right ) \ln \relax (2)-x^{2}+x \right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (\left (4+x \right ) \ln \relax (2)-x^{2}+x \right )}{\ln \relax (2)-x}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\left (4+x \right ) \ln \relax (2)-x^{2}+x \right )}{\ln \relax (2)-x}\right )+\mathrm {csgn}\left (\frac {i}{\ln \relax (2)-x}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\left (4+x \right ) \ln \relax (2)-x^{2}+x \right )}{\ln \relax (2)-x}\right )+\mathrm {csgn}\left (i \left (\left (4+x \right ) \ln \relax (2)-x^{2}+x \right )\right )\right )}{2}\right )^{\frac {x}{3}}\) | \(152\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.07, size = 42, normalized size = 1.35 \begin {gather*} -\frac {x {\left (\log \left (x^{2} - x {\left (\log \relax (2) + 1\right )} - 4 \, \log \relax (2)\right ) - \log \left (x - \log \relax (2)\right )\right )}^{\frac {1}{3} \, x} - e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.39, size = 40, normalized size = 1.29 \begin {gather*} \frac {{\mathrm {e}}^x}{x}-{\mathrm {e}}^{\frac {x\,\ln \left (\ln \left (-\frac {x+4\,\ln \relax (2)+x\,\ln \relax (2)-x^2}{x-\ln \relax (2)}\right )\right )}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________