Optimal. Leaf size=29 \[ -e^9-x+x \left (\frac {e^{2 x}}{x}+4 \log \left (4 e^9\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 12, normalized size of antiderivative = 0.41, number of steps used = 2, number of rules used = 1, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2194} \begin {gather*} e^{2 x}+x (35+\log (256)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x (35+\log (256))+2 \int e^{2 x} \, dx\\ &=e^{2 x}+x (35+\log (256))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 13, normalized size = 0.45 \begin {gather*} e^{2 x}+35 x+x \log (256) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 13, normalized size = 0.45 \begin {gather*} 8 \, x \log \relax (2) + 35 \, x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.65, size = 16, normalized size = 0.55 \begin {gather*} 4 \, x \log \left (4 \, e^{9}\right ) - x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 14, normalized size = 0.48
method | result | size |
norman | \({\mathrm e}^{2 x}+\left (8 \ln \relax (2)+35\right ) x\) | \(14\) |
risch | \({\mathrm e}^{2 x}+8 x \ln \relax (2)+35 x\) | \(14\) |
default | \({\mathrm e}^{2 x}-x +4 \ln \left (4 \,{\mathrm e}^{9}\right ) x\) | \(17\) |
derivativedivides | \({\mathrm e}^{2 x}+\left (4 \ln \left (4 \,{\mathrm e}^{9}\right )-1\right ) \ln \left ({\mathrm e}^{x}\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 16, normalized size = 0.55 \begin {gather*} 4 \, x \log \left (4 \, e^{9}\right ) - x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 11, normalized size = 0.38 \begin {gather*} {\mathrm {e}}^{2\,x}+x\,\left (\ln \left (256\right )+35\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 12, normalized size = 0.41 \begin {gather*} x \left (8 \log {\relax (2 )} + 35\right ) + e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________