Optimal. Leaf size=24 \[ \frac {e^2 x}{2 (2+\log (x)) (-x+2 \log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 (-4+x)+2 e^2 \log ^2(x)}{8 x^2+\left (-32 x+8 x^2\right ) \log (x)+\left (32-32 x+2 x^2\right ) \log ^2(x)+(32-8 x) \log ^3(x)+8 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 \left (-4+x+2 \log ^2(x)\right )}{2 (x-2 \log (x))^2 (2+\log (x))^2} \, dx\\ &=\frac {1}{2} e^2 \int \frac {-4+x+2 \log ^2(x)}{(x-2 \log (x))^2 (2+\log (x))^2} \, dx\\ &=\frac {1}{2} e^2 \int \left (\frac {2 (-2+x)}{(4+x) (x-2 \log (x))^2}-\frac {8}{(4+x)^2 (x-2 \log (x))}+\frac {1}{(4+x) (2+\log (x))^2}-\frac {4}{(4+x)^2 (2+\log (x))}\right ) \, dx\\ &=\frac {1}{2} e^2 \int \frac {1}{(4+x) (2+\log (x))^2} \, dx+e^2 \int \frac {-2+x}{(4+x) (x-2 \log (x))^2} \, dx-\left (2 e^2\right ) \int \frac {1}{(4+x)^2 (2+\log (x))} \, dx-\left (4 e^2\right ) \int \frac {1}{(4+x)^2 (x-2 \log (x))} \, dx\\ &=\frac {1}{2} e^2 \int \frac {1}{(4+x) (2+\log (x))^2} \, dx+e^2 \int \left (\frac {1}{(x-2 \log (x))^2}-\frac {6}{(4+x) (x-2 \log (x))^2}\right ) \, dx-\left (2 e^2\right ) \int \frac {1}{(4+x)^2 (2+\log (x))} \, dx-\left (4 e^2\right ) \int \frac {1}{(4+x)^2 (x-2 \log (x))} \, dx\\ &=\frac {1}{2} e^2 \int \frac {1}{(4+x) (2+\log (x))^2} \, dx+e^2 \int \frac {1}{(x-2 \log (x))^2} \, dx-\left (2 e^2\right ) \int \frac {1}{(4+x)^2 (2+\log (x))} \, dx-\left (4 e^2\right ) \int \frac {1}{(4+x)^2 (x-2 \log (x))} \, dx-\left (6 e^2\right ) \int \frac {1}{(4+x) (x-2 \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.92 \begin {gather*} -\frac {e^2 x}{2 (x-2 \log (x)) (2+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 23, normalized size = 0.96 \begin {gather*} -\frac {x e^{2}}{2 \, {\left ({\left (x - 4\right )} \log \relax (x) - 2 \, \log \relax (x)^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 25, normalized size = 1.04 \begin {gather*} -\frac {x e^{2}}{2 \, {\left (x \log \relax (x) - 2 \, \log \relax (x)^{2} + 2 \, x - 4 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 0.83
method | result | size |
norman | \(-\frac {{\mathrm e}^{2} x}{2 \left (\ln \relax (x )+2\right ) \left (x -2 \ln \relax (x )\right )}\) | \(20\) |
risch | \(-\frac {{\mathrm e}^{2} x}{2 \left (x \ln \relax (x )-2 \ln \relax (x )^{2}+2 x -4 \ln \relax (x )\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 23, normalized size = 0.96 \begin {gather*} -\frac {x e^{2}}{2 \, {\left ({\left (x - 4\right )} \log \relax (x) - 2 \, \log \relax (x)^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 19, normalized size = 0.79 \begin {gather*} -\frac {x\,{\mathrm {e}}^2}{2\,\left (x-2\,\ln \relax (x)\right )\,\left (\ln \relax (x)+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 0.92 \begin {gather*} \frac {x e^{2}}{- 4 x + \left (8 - 2 x\right ) \log {\relax (x )} + 4 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________