Optimal. Leaf size=21 \[ \log \left (x \log ^2\left (e^{2 x}+\frac {1}{5} \left (8+x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.39, antiderivative size = 23, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 2, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6688, 6684} \begin {gather*} 2 \log \left (\log \left (\frac {1}{5} \left (x^2+5 e^{2 x}+8\right )\right )\right )+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+\frac {4 \left (5 e^{2 x}+x\right )}{\left (8+5 e^{2 x}+x^2\right ) \log \left (\frac {1}{5} \left (8+5 e^{2 x}+x^2\right )\right )}\right ) \, dx\\ &=\log (x)+4 \int \frac {5 e^{2 x}+x}{\left (8+5 e^{2 x}+x^2\right ) \log \left (\frac {1}{5} \left (8+5 e^{2 x}+x^2\right )\right )} \, dx\\ &=\log (x)+2 \log \left (\log \left (\frac {1}{5} \left (8+5 e^{2 x}+x^2\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 23, normalized size = 1.10 \begin {gather*} \log (x)+2 \log \left (\log \left (\frac {1}{5} \left (8+5 e^{2 x}+x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 18, normalized size = 0.86 \begin {gather*} \log \relax (x) + 2 \, \log \left (\log \left (\frac {1}{5} \, x^{2} + e^{\left (2 \, x\right )} + \frac {8}{5}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.30, size = 18, normalized size = 0.86 \begin {gather*} \log \relax (x) + 2 \, \log \left (\log \left (\frac {1}{5} \, x^{2} + e^{\left (2 \, x\right )} + \frac {8}{5}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.90
method | result | size |
risch | \(\ln \relax (x )+2 \ln \left (\ln \left ({\mathrm e}^{2 x}+\frac {x^{2}}{5}+\frac {8}{5}\right )\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 23, normalized size = 1.10 \begin {gather*} \log \relax (x) + 2 \, \log \left (-\log \relax (5) + \log \left (x^{2} + 5 \, e^{\left (2 \, x\right )} + 8\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 18, normalized size = 0.86 \begin {gather*} 2\,\ln \left (\ln \left ({\mathrm {e}}^{2\,x}+\frac {x^2}{5}+\frac {8}{5}\right )\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 20, normalized size = 0.95 \begin {gather*} \log {\relax (x )} + 2 \log {\left (\log {\left (\frac {x^{2}}{5} + e^{2 x} + \frac {8}{5} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________