Optimal. Leaf size=27 \[ \frac {2 e^4}{7 x \left (1+\frac {3+e^3}{5 \log (x)}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.58, antiderivative size = 37, normalized size of antiderivative = 1.37, number of steps used = 11, number of rules used = 7, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {6, 6688, 12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {2 e^4}{7 x}-\frac {2 e^4 \left (3+e^3\right )}{7 x \left (5 \log (x)+e^3+3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (30+10 e^3\right )+e^4 \left (-30-10 e^3\right ) \log (x)-50 e^4 \log ^2(x)}{7 e^6 x^2+\left (63+42 e^3\right ) x^2+\left (210 x^2+70 e^3 x^2\right ) \log (x)+175 x^2 \log ^2(x)} \, dx\\ &=\int \frac {e^4 \left (30+10 e^3\right )+e^4 \left (-30-10 e^3\right ) \log (x)-50 e^4 \log ^2(x)}{\left (63+42 e^3+7 e^6\right ) x^2+\left (210 x^2+70 e^3 x^2\right ) \log (x)+175 x^2 \log ^2(x)} \, dx\\ &=\int \frac {10 e^4 \left (3 \left (1+\frac {e^3}{3}\right )-\left (3+e^3\right ) \log (x)-5 \log ^2(x)\right )}{7 x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )^2} \, dx\\ &=\frac {1}{7} \left (10 e^4\right ) \int \frac {3 \left (1+\frac {e^3}{3}\right )-\left (3+e^3\right ) \log (x)-5 \log ^2(x)}{x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )^2} \, dx\\ &=\frac {1}{7} \left (10 e^4\right ) \int \left (-\frac {1}{5 x^2}+\frac {3+e^3}{x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )^2}+\frac {3+e^3}{5 x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )}\right ) \, dx\\ &=\frac {2 e^4}{7 x}+\frac {1}{7} \left (2 e^4 \left (3+e^3\right )\right ) \int \frac {1}{x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )} \, dx+\frac {1}{7} \left (10 e^4 \left (3+e^3\right )\right ) \int \frac {1}{x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )^2} \, dx\\ &=\frac {2 e^4}{7 x}-\frac {2 e^4 \left (3+e^3\right )}{7 x \left (3+e^3+5 \log (x)\right )}-\frac {1}{7} \left (2 e^4 \left (3+e^3\right )\right ) \int \frac {1}{x^2 \left (3 \left (1+\frac {e^3}{3}\right )+5 \log (x)\right )} \, dx+\frac {1}{7} \left (2 e^4 \left (3+e^3\right )\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{3 \left (1+\frac {e^3}{3}\right )+5 x} \, dx,x,\log (x)\right )\\ &=\frac {2 e^4}{7 x}+\frac {2}{35} e^{\frac {1}{5} \left (23+e^3\right )} \left (3+e^3\right ) \text {Ei}\left (\frac {1}{5} \left (-3-e^3-5 \log (x)\right )\right )-\frac {2 e^4 \left (3+e^3\right )}{7 x \left (3+e^3+5 \log (x)\right )}-\frac {1}{7} \left (2 e^4 \left (3+e^3\right )\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{3 \left (1+\frac {e^3}{3}\right )+5 x} \, dx,x,\log (x)\right )\\ &=\frac {2 e^4}{7 x}-\frac {2 e^4 \left (3+e^3\right )}{7 x \left (3+e^3+5 \log (x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 23, normalized size = 0.85 \begin {gather*} \frac {10 e^4 \log (x)}{7 x \left (3+e^3+5 \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 21, normalized size = 0.78 \begin {gather*} \frac {10 \, e^{4} \log \relax (x)}{7 \, {\left (x e^{3} + 5 \, x \log \relax (x) + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 21, normalized size = 0.78 \begin {gather*} \frac {10 \, e^{4} \log \relax (x)}{7 \, {\left (x e^{3} + 5 \, x \log \relax (x) + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 0.74
method | result | size |
norman | \(\frac {10 \,{\mathrm e}^{4} \ln \relax (x )}{7 x \left (3+5 \ln \relax (x )+{\mathrm e}^{3}\right )}\) | \(20\) |
risch | \(\frac {2 \,{\mathrm e}^{4}}{7 x}-\frac {2 \,{\mathrm e}^{4} \left ({\mathrm e}^{3}+3\right )}{7 x \left (3+5 \ln \relax (x )+{\mathrm e}^{3}\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 20, normalized size = 0.74 \begin {gather*} \frac {10 \, e^{4} \log \relax (x)}{7 \, {\left (x {\left (e^{3} + 3\right )} + 5 \, x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 19, normalized size = 0.70 \begin {gather*} \frac {10\,{\mathrm {e}}^4\,\ln \relax (x)}{7\,x\,\left ({\mathrm {e}}^3+5\,\ln \relax (x)+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 36, normalized size = 1.33 \begin {gather*} \frac {- 2 e^{7} - 6 e^{4}}{35 x \log {\relax (x )} + 21 x + 7 x e^{3}} + \frac {2 e^{4}}{7 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________