Optimal. Leaf size=22 \[ \left (25+\frac {e^{-1+e^{2 x}}}{x}\right ) x^2 (e+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 29, normalized size of antiderivative = 1.32, number of steps used = 2, number of rules used = 1, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {2288} \begin {gather*} 25 x^3+25 e x^2+e^{e^{2 x}-1} \left (x^2+e x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=25 e x^2+25 x^3+\int e^{-1+e^{2 x}} \left (e+2 x+e^{2 x} \left (2 e x+2 x^2\right )\right ) \, dx\\ &=25 e x^2+25 x^3+e^{-1+e^{2 x}} \left (e x+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 1.18 \begin {gather*} 25 e x^2+25 x^3+e^{-1+e^{2 x}} x (e+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.74, size = 29, normalized size = 1.32 \begin {gather*} 25 \, x^{3} + 25 \, x^{2} e + {\left (x^{2} + x e\right )} e^{\left (e^{\left (2 \, x\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 46, normalized size = 2.09 \begin {gather*} 25 \, x^{3} + 25 \, x^{2} e + {\left (x^{2} e^{\left (2 \, x + e^{\left (2 \, x\right )}\right )} + x e^{\left (2 \, x + e^{\left (2 \, x\right )} + 1\right )}\right )} e^{\left (-2 \, x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 30, normalized size = 1.36
method | result | size |
risch | \(\left (x \,{\mathrm e}+x^{2}\right ) {\mathrm e}^{{\mathrm e}^{2 x}-1}+25 x^{2} {\mathrm e}+25 x^{3}\) | \(30\) |
default | \(x^{2} {\mathrm e}^{{\mathrm e}^{2 x}-1}+{\mathrm e} x \,{\mathrm e}^{{\mathrm e}^{2 x}-1}+25 x^{3}+25 x^{2} {\mathrm e}\) | \(36\) |
norman | \(x^{2} {\mathrm e}^{{\mathrm e}^{2 x}-1}+{\mathrm e} x \,{\mathrm e}^{{\mathrm e}^{2 x}-1}+25 x^{3}+25 x^{2} {\mathrm e}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 29, normalized size = 1.32 \begin {gather*} 25 \, x^{3} + 25 \, x^{2} e + {\left (x^{2} + x e\right )} e^{\left (e^{\left (2 \, x\right )} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 19, normalized size = 0.86 \begin {gather*} x\,{\mathrm {e}}^{-1}\,\left (x+\mathrm {e}\right )\,\left ({\mathrm {e}}^{{\mathrm {e}}^{2\,x}}+25\,x\,\mathrm {e}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.32 \begin {gather*} 25 x^{3} + 25 e x^{2} + \left (x^{2} + e x\right ) e^{e^{2 x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________