Optimal. Leaf size=28 \[ e^{x \left (-x+\log ^2(x)\right )+\frac {e^{2+4 x}}{\log (\log (5))}} x \]
________________________________________________________________________________________
Rubi [F] time = 1.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) \left (4 e^{2+4 x} x+\left (1-2 x^2+2 x \log (x)+x \log ^2(x)\right ) \log (\log (5))\right )}{\log (\log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) \left (4 e^{2+4 x} x+\left (1-2 x^2+2 x \log (x)+x \log ^2(x)\right ) \log (\log (5))\right ) \, dx}{\log (\log (5))}\\ &=\frac {\int \left (4 \exp \left (2+4 x+\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x-\exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) \left (-1+2 x^2-2 x \log (x)-x \log ^2(x)\right ) \log (\log (5))\right ) \, dx}{\log (\log (5))}\\ &=\frac {4 \int \exp \left (2+4 x+\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \, dx}{\log (\log (5))}-\int \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) \left (-1+2 x^2-2 x \log (x)-x \log ^2(x)\right ) \, dx\\ &=\frac {4 \int \exp \left (2+4 x+\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \, dx}{\log (\log (5))}-\int \left (-\exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right )+2 \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x^2-2 \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \log (x)-\exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \log ^2(x)\right ) \, dx\\ &=-\left (2 \int \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x^2 \, dx\right )+2 \int \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \log (x) \, dx+\frac {4 \int \exp \left (2+4 x+\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \, dx}{\log (\log (5))}+\int \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) \, dx+\int \exp \left (\frac {e^{2+4 x}+\left (-x^2+x \log ^2(x)\right ) \log (\log (5))}{\log (\log (5))}\right ) x \log ^2(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.91, size = 29, normalized size = 1.04 \begin {gather*} e^{-x^2+x \log ^2(x)+\frac {e^{2+4 x}}{\log (\log (5))}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 32, normalized size = 1.14 \begin {gather*} x e^{\left (\frac {{\left (x \log \relax (x)^{2} - x^{2}\right )} \log \left (\log \relax (5)\right ) + e^{\left (4 \, x + 2\right )}}{\log \left (\log \relax (5)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.21
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {\ln \relax (x )^{2} \ln \left (\ln \relax (5)\right ) x -\ln \left (\ln \relax (5)\right ) x^{2}+{\mathrm e}^{4 x +2}}{\ln \left (\ln \relax (5)\right )}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 27, normalized size = 0.96 \begin {gather*} x e^{\left (x \log \relax (x)^{2} - x^{2} + \frac {e^{\left (4 \, x + 2\right )}}{\log \left (\log \relax (5)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.56, size = 28, normalized size = 1.00 \begin {gather*} x\,{\mathrm {e}}^{x\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^2}{\ln \left (\ln \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 31, normalized size = 1.11 \begin {gather*} x e^{\frac {\left (- x^{2} + x \log {\relax (x )}^{2}\right ) \log {\left (\log {\relax (5 )} \right )} + e^{2} e^{4 x}}{\log {\left (\log {\relax (5 )} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________