Optimal. Leaf size=26 \[ -\frac {4}{4 x^2+\frac {3 x}{\frac {e^4}{x}+2 x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 43, normalized size of antiderivative = 1.65, number of steps used = 4, number of rules used = 3, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6, 2074, 261} \begin {gather*} -\frac {4 e^4}{\left (3+4 e^4\right ) x^2}-\frac {24}{\left (3+4 e^4\right ) \left (8 x^2+4 e^4+3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 261
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 e^8+128 x^4+e^4 \left (24+128 x^2\right )}{\left (9+16 e^8\right ) x^3+48 x^5+64 x^7+e^4 \left (24 x^3+64 x^5\right )} \, dx\\ &=\int \left (\frac {8 e^4}{\left (3+4 e^4\right ) x^3}+\frac {384 x}{\left (3+4 e^4\right ) \left (3+4 e^4+8 x^2\right )^2}\right ) \, dx\\ &=-\frac {4 e^4}{\left (3+4 e^4\right ) x^2}+\frac {384 \int \frac {x}{\left (3+4 e^4+8 x^2\right )^2} \, dx}{3+4 e^4}\\ &=-\frac {4 e^4}{\left (3+4 e^4\right ) x^2}-\frac {24}{\left (3+4 e^4\right ) \left (3+4 e^4+8 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \left (e^4+2 x^2\right )}{x^2 \left (3+4 e^4+8 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 30, normalized size = 1.15 \begin {gather*} -\frac {4 \, {\left (2 \, x^{2} + e^{4}\right )}}{8 \, x^{4} + 4 \, x^{2} e^{4} + 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 27, normalized size = 1.04
method | result | size |
gosper | \(-\frac {4 \left (2 x^{2}+{\mathrm e}^{4}\right )}{x^{2} \left (8 x^{2}+4 \,{\mathrm e}^{4}+3\right )}\) | \(27\) |
norman | \(\frac {-8 x^{2}-4 \,{\mathrm e}^{4}}{x^{2} \left (8 x^{2}+4 \,{\mathrm e}^{4}+3\right )}\) | \(28\) |
risch | \(\frac {-8 x^{2}-4 \,{\mathrm e}^{4}}{x^{2} \left (8 x^{2}+4 \,{\mathrm e}^{4}+3\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \, {\left (2 \, x^{2} + e^{4}\right )}}{8 \, x^{4} + x^{2} {\left (4 \, e^{4} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.32, size = 26, normalized size = 1.00 \begin {gather*} -\frac {4\,\left (2\,x^2+{\mathrm {e}}^4\right )}{x^2\,\left (8\,x^2+4\,{\mathrm {e}}^4+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 26, normalized size = 1.00 \begin {gather*} \frac {- 8 x^{2} - 4 e^{4}}{8 x^{4} + x^{2} \left (3 + 4 e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________