3.23.26 \(\int \frac {2 x-e^{\frac {1}{x}} x+e^{\frac {1}{x}} (1-x) \log (x)}{4 x} \, dx\)

Optimal. Leaf size=24 \[ 1+x+\frac {1}{2} \left (-22-x-\frac {1}{2} e^{\frac {1}{x}} x \log (x)\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 18, normalized size of antiderivative = 0.75, number of steps used = 4, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {12, 14, 2288} \begin {gather*} \frac {x}{2}-\frac {1}{4} e^{\frac {1}{x}} x \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2*x - E^x^(-1)*x + E^x^(-1)*(1 - x)*Log[x])/(4*x),x]

[Out]

x/2 - (E^x^(-1)*x*Log[x])/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {2 x-e^{\frac {1}{x}} x+e^{\frac {1}{x}} (1-x) \log (x)}{x} \, dx\\ &=\frac {1}{4} \int \left (2-\frac {e^{\frac {1}{x}} (x-\log (x)+x \log (x))}{x}\right ) \, dx\\ &=\frac {x}{2}-\frac {1}{4} \int \frac {e^{\frac {1}{x}} (x-\log (x)+x \log (x))}{x} \, dx\\ &=\frac {x}{2}-\frac {1}{4} e^{\frac {1}{x}} x \log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 18, normalized size = 0.75 \begin {gather*} \frac {1}{4} \left (2 x-e^{\frac {1}{x}} x \log (x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2*x - E^x^(-1)*x + E^x^(-1)*(1 - x)*Log[x])/(4*x),x]

[Out]

(2*x - E^x^(-1)*x*Log[x])/4

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 13, normalized size = 0.54 \begin {gather*} -\frac {1}{4} \, x e^{\frac {1}{x}} \log \relax (x) + \frac {1}{2} \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x+1)*exp(1/x)*log(x)-x*exp(1/x)+2*x)/x,x, algorithm="fricas")

[Out]

-1/4*x*e^(1/x)*log(x) + 1/2*x

________________________________________________________________________________________

giac [A]  time = 0.18, size = 13, normalized size = 0.54 \begin {gather*} -\frac {1}{4} \, x e^{\frac {1}{x}} \log \relax (x) + \frac {1}{2} \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x+1)*exp(1/x)*log(x)-x*exp(1/x)+2*x)/x,x, algorithm="giac")

[Out]

-1/4*x*e^(1/x)*log(x) + 1/2*x

________________________________________________________________________________________

maple [A]  time = 0.15, size = 14, normalized size = 0.58




method result size



norman \(\frac {x}{2}-\frac {x \,{\mathrm e}^{\frac {1}{x}} \ln \relax (x )}{4}\) \(14\)
risch \(\frac {x}{2}-\frac {x \,{\mathrm e}^{\frac {1}{x}} \ln \relax (x )}{4}\) \(14\)
derivativedivides \(\frac {x}{2}-\frac {\left (\frac {\left (\ln \left (\frac {1}{x}\right )+\ln \relax (x )\right ) {\mathrm e}^{\frac {1}{x}}}{x}-\frac {{\mathrm e}^{\frac {1}{x}} \ln \left (\frac {1}{x}\right )}{x}\right ) x^{2}}{4}\) \(39\)
default \(\frac {x}{2}-\frac {\left (\frac {\left (\ln \left (\frac {1}{x}\right )+\ln \relax (x )\right ) {\mathrm e}^{\frac {1}{x}}}{x}-\frac {{\mathrm e}^{\frac {1}{x}} \ln \left (\frac {1}{x}\right )}{x}\right ) x^{2}}{4}\) \(39\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*((1-x)*exp(1/x)*ln(x)-x*exp(1/x)+2*x)/x,x,method=_RETURNVERBOSE)

[Out]

1/2*x-1/4*x*exp(1/x)*ln(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, x e^{\frac {1}{x}} \log \relax (x) + \frac {1}{2} \, x + \frac {1}{4} \, \Gamma \left (-1, -\frac {1}{x}\right ) + \frac {1}{4} \, \int e^{\frac {1}{x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x+1)*exp(1/x)*log(x)-x*exp(1/x)+2*x)/x,x, algorithm="maxima")

[Out]

-1/4*x*e^(1/x)*log(x) + 1/2*x + 1/4*gamma(-1, -1/x) + 1/4*integrate(e^(1/x), x)

________________________________________________________________________________________

mupad [B]  time = 1.36, size = 12, normalized size = 0.50 \begin {gather*} -\frac {x\,\left ({\mathrm {e}}^{1/x}\,\ln \relax (x)-2\right )}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((x*exp(1/x))/4 - x/2 + (exp(1/x)*log(x)*(x - 1))/4)/x,x)

[Out]

-(x*(exp(1/x)*log(x) - 2))/4

________________________________________________________________________________________

sympy [A]  time = 0.28, size = 14, normalized size = 0.58 \begin {gather*} - \frac {x e^{\frac {1}{x}} \log {\relax (x )}}{4} + \frac {x}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x+1)*exp(1/x)*ln(x)-x*exp(1/x)+2*x)/x,x)

[Out]

-x*exp(1/x)*log(x)/4 + x/2

________________________________________________________________________________________