Optimal. Leaf size=19 \[ e^{\frac {\left ((-5+x)^2+x\right )^2}{x}}+3 x \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 20, normalized size of antiderivative = 1.05, number of steps used = 3, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {14, 6706} \begin {gather*} e^{\frac {\left (x^2-9 x+25\right )^2}{x}}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3+\frac {e^{\frac {\left (25-9 x+x^2\right )^2}{x}} \left (25-9 x+x^2\right ) \left (-25-9 x+3 x^2\right )}{x^2}\right ) \, dx\\ &=3 x+\int \frac {e^{\frac {\left (25-9 x+x^2\right )^2}{x}} \left (25-9 x+x^2\right ) \left (-25-9 x+3 x^2\right )}{x^2} \, dx\\ &=e^{\frac {\left (25-9 x+x^2\right )^2}{x}}+3 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 24, normalized size = 1.26 \begin {gather*} e^{-450+\frac {625}{x}+131 x-18 x^2+x^3}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 27, normalized size = 1.42 \begin {gather*} 3 \, x + e^{\left (\frac {x^{4} - 18 \, x^{3} + 131 \, x^{2} - 450 \, x + 625}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 27, normalized size = 1.42 \begin {gather*} 3 \, x + e^{\left (\frac {x^{4} - 18 \, x^{3} + 131 \, x^{2} - 450 \, x + 625}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 20, normalized size = 1.05
method | result | size |
risch | \(3 x +{\mathrm e}^{\frac {\left (x^{2}-9 x +25\right )^{2}}{x}}\) | \(20\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {x^{4}-18 x^{3}+131 x^{2}-450 x +625}{x}}+3 x^{2}}{x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 23, normalized size = 1.21 \begin {gather*} 3 \, x + e^{\left (x^{3} - 18 \, x^{2} + 131 \, x + \frac {625}{x} - 450\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.33, size = 27, normalized size = 1.42 \begin {gather*} 3\,x+{\mathrm {e}}^{131\,x}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{-450}\,{\mathrm {e}}^{-18\,x^2}\,{\mathrm {e}}^{625/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 1.26 \begin {gather*} 3 x + e^{\frac {x^{4} - 18 x^{3} + 131 x^{2} - 450 x + 625}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________