Optimal. Leaf size=30 \[ 5 e^{e^2} x+\frac {1}{x (5+x)}+\frac {2+x^2}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 4, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {1594, 27, 12, 1620} \begin {gather*} \frac {1}{2} \left (1+10 e^{e^2}\right ) x-\frac {1}{5 (x+5)}+\frac {6}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-60-24 x+23 x^2+10 x^3+x^4+e^{e^2} \left (250 x^2+100 x^3+10 x^4\right )}{x^2 \left (50+20 x+2 x^2\right )} \, dx\\ &=\int \frac {-60-24 x+23 x^2+10 x^3+x^4+e^{e^2} \left (250 x^2+100 x^3+10 x^4\right )}{2 x^2 (5+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-60-24 x+23 x^2+10 x^3+x^4+e^{e^2} \left (250 x^2+100 x^3+10 x^4\right )}{x^2 (5+x)^2} \, dx\\ &=\frac {1}{2} \int \left (1+10 e^{e^2}-\frac {12}{5 x^2}+\frac {2}{5 (5+x)^2}\right ) \, dx\\ &=\frac {6}{5 x}+\frac {1}{2} \left (1+10 e^{e^2}\right ) x-\frac {1}{5 (5+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 32, normalized size = 1.07 \begin {gather*} \frac {1}{2} \left (\frac {12}{5 x}+\left (1+10 e^{e^2}\right ) x-\frac {2}{5 (5+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 38, normalized size = 1.27 \begin {gather*} \frac {x^{3} + 5 \, x^{2} + 10 \, {\left (x^{3} + 5 \, x^{2}\right )} e^{\left (e^{2}\right )} + 2 \, x + 12}{2 \, {\left (x^{2} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 23, normalized size = 0.77 \begin {gather*} 5 \, x e^{\left (e^{2}\right )} + \frac {1}{2} \, x + \frac {x + 6}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.77
method | result | size |
default | \(5 x \,{\mathrm e}^{{\mathrm e}^{2}}+\frac {x}{2}-\frac {1}{5 \left (5+x \right )}+\frac {6}{5 x}\) | \(23\) |
risch | \(5 x \,{\mathrm e}^{{\mathrm e}^{2}}+\frac {x}{2}+\frac {x +6}{\left (5+x \right ) x}\) | \(23\) |
norman | \(\frac {6+\left (5 \,{\mathrm e}^{{\mathrm e}^{2}}+\frac {1}{2}\right ) x^{3}+\left (-\frac {23}{2}-125 \,{\mathrm e}^{{\mathrm e}^{2}}\right ) x}{\left (5+x \right ) x}\) | \(32\) |
gosper | \(\frac {10 x^{3} {\mathrm e}^{{\mathrm e}^{2}}+x^{3}-250 x \,{\mathrm e}^{{\mathrm e}^{2}}-23 x +12}{2 x \left (5+x \right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 24, normalized size = 0.80 \begin {gather*} \frac {1}{2} \, x {\left (10 \, e^{\left (e^{2}\right )} + 1\right )} + \frac {x + 6}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 22, normalized size = 0.73 \begin {gather*} x\,\left (5\,{\mathrm {e}}^{{\mathrm {e}}^2}+\frac {1}{2}\right )+\frac {x+6}{x\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 20, normalized size = 0.67 \begin {gather*} x \left (\frac {1}{2} + 5 e^{e^{2}}\right ) + \frac {x + 6}{x^{2} + 5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________