Optimal. Leaf size=26 \[ e^{x+\frac {\log (3)-\frac {e^x \log (4)}{x}}{x}}-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 3, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {14, 2288} \begin {gather*} 3^{\frac {1}{x}} 4^{-\frac {e^x}{x^2}} e^x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{x}-\frac {3^{\frac {1}{x}} 4^{-\frac {e^x}{x^2}} e^x \left (-x^3+x \log (3)+e^x x \log (4)-e^x \log (16)\right )}{x^3}\right ) \, dx\\ &=-\log (x)-\int \frac {3^{\frac {1}{x}} 4^{-\frac {e^x}{x^2}} e^x \left (-x^3+x \log (3)+e^x x \log (4)-e^x \log (16)\right )}{x^3} \, dx\\ &=3^{\frac {1}{x}} 4^{-\frac {e^x}{x^2}} e^x-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 0.92 \begin {gather*} 3^{\frac {1}{x}} 4^{-\frac {e^x}{x^2}} e^x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 24, normalized size = 0.92 \begin {gather*} e^{\left (\frac {x^{3} + x \log \relax (3) - 2 \, e^{x} \log \relax (2)}{x^{2}}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.66, size = 23, normalized size = 0.88 \begin {gather*} e^{\left (x + \frac {\log \relax (3)}{x} - \frac {2 \, e^{x} \log \relax (2)}{x^{2}}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 22, normalized size = 0.85
method | result | size |
risch | \(\left (\frac {1}{4}\right )^{\frac {{\mathrm e}^{x}}{x^{2}}} 3^{\frac {1}{x}} {\mathrm e}^{x}-\ln \relax (x )\) | \(22\) |
norman | \({\mathrm e}^{\frac {-2 \,{\mathrm e}^{x} \ln \relax (2)+x \ln \relax (3)+x^{3}}{x^{2}}}-\ln \relax (x )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 23, normalized size = 0.88 \begin {gather*} e^{\left (x + \frac {\log \relax (3)}{x} - \frac {2 \, e^{x} \log \relax (2)}{x^{2}}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 24, normalized size = 0.92 \begin {gather*} \frac {3^{1/x}\,{\mathrm {e}}^x}{2^{\frac {2\,{\mathrm {e}}^x}{x^2}}}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 0.92 \begin {gather*} e^{\frac {x^{3} + x \log {\relax (3 )} - 2 e^{x} \log {\relax (2 )}}{x^{2}}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________