Optimal. Leaf size=29 \[ 4 e^{\frac {e^{2 x}}{1-5 e^{-x^2}+\log (3)-\log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 59.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {e^{2 x+x^2}}{5+e^{x^2} (-1-\log (3))+e^{x^2} \log (x)}\right ) \left (e^{2 x+x^2} \left (-40 x-40 x^2\right )+e^{2 x+2 x^2} (4+8 x+8 x \log (3))-8 e^{2 x+2 x^2} x \log (x)\right )}{25 x+e^{x^2} (-10 x-10 x \log (3))+e^{2 x^2} \left (x+2 x \log (3)+x \log ^2(3)\right )+\left (10 e^{x^2} x+e^{2 x^2} (-2 x-2 x \log (3))\right ) \log (x)+e^{2 x^2} x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) \left (-10 x (1+x)+e^{x^2} (1+x (2+\log (9)))-2 e^{x^2} x \log (x)\right )}{x \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2} \, dx\\ &=4 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) \left (-10 x (1+x)+e^{x^2} (1+x (2+\log (9)))-2 e^{x^2} x \log (x)\right )}{x \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2} \, dx\\ &=4 \int \left (\frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) (-1-2 x (1+\log (3))+2 x \log (x))}{x (1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )}+\frac {5 \exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) \left (1-2 x^2 (1+\log (3))+2 x^2 \log (x)\right )}{x (1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2}\right ) \, dx\\ &=4 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) (-1-2 x (1+\log (3))+2 x \log (x))}{x (1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )} \, dx+20 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) \left (1-2 x^2 (1+\log (3))+2 x^2 \log (x)\right )}{x (1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2} \, dx\\ &=4 \int \left (\frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) (-2-\log (9))}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )}+\frac {2 \exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) \log (x)}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )}+\frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right )}{x (-1-\log (3)+\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )}\right ) \, dx+20 \int \left (\frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right )}{x (1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2}+\frac {2 \exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) x (-1-\log (3))}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2}+\frac {2 \exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) x \log (x)}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2}\right ) \, dx\\ &=4 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right )}{x (-1-\log (3)+\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )} \, dx+8 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) \log (x)}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )} \, dx+20 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right )}{x (1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2} \, dx+40 \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) x \log (x)}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2} \, dx-(40 (1+\log (3))) \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right ) x}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )^2} \, dx-(4 (2+\log (9))) \int \frac {\exp \left (2 x+x^2+\frac {e^{x (2+x)}}{-5+e^{x^2} (1+\log (3))-e^{x^2} \log (x)}\right )}{(1+\log (3)-\log (x)) \left (5-e^{x^2} (1+\log (3))+e^{x^2} \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.04, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-\frac {e^{2 x+x^2}}{5+e^{x^2} (-1-\log (3))+e^{x^2} \log (x)}} \left (e^{2 x+x^2} \left (-40 x-40 x^2\right )+e^{2 x+2 x^2} (4+8 x+8 x \log (3))-8 e^{2 x+2 x^2} x \log (x)\right )}{25 x+e^{x^2} (-10 x-10 x \log (3))+e^{2 x^2} \left (x+2 x \log (3)+x \log ^2(3)\right )+\left (10 e^{x^2} x+e^{2 x^2} (-2 x-2 x \log (3))\right ) \log (x)+e^{2 x^2} x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 56, normalized size = 1.93 \begin {gather*} 4 \, e^{\left (\frac {e^{\left (2 \, x^{2} + 4 \, x\right )}}{{\left (\log \relax (3) + 1\right )} e^{\left (2 \, x^{2} + 2 \, x\right )} - e^{\left (2 \, x^{2} + 2 \, x\right )} \log \relax (x) - 5 \, e^{\left (x^{2} + 2 \, x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.53, size = 35, normalized size = 1.21 \begin {gather*} 4 \, e^{\left (\frac {e^{\left (x^{2} + 2 \, x\right )}}{e^{\left (x^{2}\right )} \log \relax (3) - e^{\left (x^{2}\right )} \log \relax (x) + e^{\left (x^{2}\right )} - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 34, normalized size = 1.17
method | result | size |
risch | \(4 \,{\mathrm e}^{\frac {{\mathrm e}^{x \left (2+x \right )}}{-{\mathrm e}^{x^{2}} \ln \relax (x )+{\mathrm e}^{x^{2}} \ln \relax (3)+{\mathrm e}^{x^{2}}-5}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.01, size = 33, normalized size = 1.14 \begin {gather*} 4 \, e^{\left (\frac {e^{\left (x^{2} + 2 \, x\right )}}{{\left (\log \relax (3) + 1\right )} e^{\left (x^{2}\right )} - e^{\left (x^{2}\right )} \log \relax (x) - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{x^2}}{{\mathrm {e}}^{x^2}\,\ln \relax (x)-{\mathrm {e}}^{x^2}\,\left (\ln \relax (3)+1\right )+5}}\,\left ({\mathrm {e}}^{x^2+2\,x}\,\left (40\,x^2+40\,x\right )-{\mathrm {e}}^{2\,x^2+2\,x}\,\left (8\,x+8\,x\,\ln \relax (3)+4\right )+8\,x\,{\mathrm {e}}^{2\,x^2+2\,x}\,\ln \relax (x)\right )}{x\,{\mathrm {e}}^{2\,x^2}\,{\ln \relax (x)}^2+\left (10\,x\,{\mathrm {e}}^{x^2}-{\mathrm {e}}^{2\,x^2}\,\left (2\,x+2\,x\,\ln \relax (3)\right )\right )\,\ln \relax (x)+25\,x-{\mathrm {e}}^{x^2}\,\left (10\,x+10\,x\,\ln \relax (3)\right )+{\mathrm {e}}^{2\,x^2}\,\left (x+2\,x\,\ln \relax (3)+x\,{\ln \relax (3)}^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 23.09, size = 34, normalized size = 1.17 \begin {gather*} 4 e^{- \frac {e^{2 x} e^{x^{2}}}{e^{x^{2}} \log {\relax (x )} + \left (- \log {\relax (3 )} - 1\right ) e^{x^{2}} + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________