Optimal. Leaf size=25 \[ \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \]
________________________________________________________________________________________
Rubi [F] time = 4.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-4+4 x^2-x^4+\log ^2\left (\frac {x^3}{3}\right )+\left (4-2 x^2\right ) \log (\log (x))-\log ^2(\log (x))\right )^x \left (-4+2 x^2+\left (-8 x^2+4 x^4\right ) \log (x)-6 \log (x) \log \left (\frac {x^3}{3}\right )+\left (2+4 x^2 \log (x)\right ) \log (\log (x))+\left (\left (4-4 x^2+x^4\right ) \log (x)-\log (x) \log ^2\left (\frac {x^3}{3}\right )+\left (-4+2 x^2\right ) \log (x) \log (\log (x))+\log (x) \log ^2(\log (x))\right ) \log \left (-4+4 x^2-x^4+\log ^2\left (\frac {x^3}{3}\right )+\left (4-2 x^2\right ) \log (\log (x))-\log ^2(\log (x))\right )\right )}{\left (4-4 x^2+x^4\right ) \log (x)-\log (x) \log ^2\left (\frac {x^3}{3}\right )+\left (-4+2 x^2\right ) \log (x) \log (\log (x))+\log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \left (4-2 x^2-4 x^2 \left (-2+x^2\right ) \log (x)+6 \log (x) \log \left (\frac {x^3}{3}\right )-\left (2+4 x^2 \log (x)\right ) \log (\log (x))-\log (x) \left (-\log ^2\left (\frac {x^3}{3}\right )+\left (-2+x^2+\log (\log (x))\right )^2\right ) \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )\right )}{\log (x)} \, dx\\ &=\int \left (-\frac {2 \left (-2+x^2-4 x^2 \log (x)+2 x^4 \log (x)+\log (27) \log (x)-3 \log (x) \log \left (x^3\right )+\log (\log (x))+2 x^2 \log (x) \log (\log (x))\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}+\left (2-x^2-\log \left (\frac {x^3}{3}\right )-\log (\log (x))\right ) \left (x^2-2 \left (1-\frac {\log (3)}{2}\right )-\log \left (x^3\right )+\log (\log (x))\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )\right ) \, dx\\ &=-\left (2 \int \frac {\left (-2+x^2-4 x^2 \log (x)+2 x^4 \log (x)+\log (27) \log (x)-3 \log (x) \log \left (x^3\right )+\log (\log (x))+2 x^2 \log (x) \log (\log (x))\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )+\int \left (2-x^2-\log \left (\frac {x^3}{3}\right )-\log (\log (x))\right ) \left (x^2-2 \left (1-\frac {\log (3)}{2}\right )-\log \left (x^3\right )+\log (\log (x))\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \left (\frac {\left (-2+x^2-4 x^2 \log (x)+2 x^4 \log (x)+\log (27) \log (x)-3 \log (x) \log \left (x^3\right )\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}+\frac {\left (1+2 x^2 \log (x)\right ) \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}\right ) \, dx\right )+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \frac {\left (-2+x^2-4 x^2 \log (x)+2 x^4 \log (x)+\log (27) \log (x)-3 \log (x) \log \left (x^3\right )\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )-2 \int \frac {\left (1+2 x^2 \log (x)\right ) \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \left (\frac {\left (-2+x^2-4 x^2 \log (x)+2 x^4 \log (x)+\log (27) \log (x)\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}-3 \log \left (x^3\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}\right ) \, dx\right )-2 \int \left (2 x^2 \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}+\frac {\log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}\right ) \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \frac {\left (-2+x^2-4 x^2 \log (x)+2 x^4 \log (x)+\log (27) \log (x)\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )-2 \int \frac {\log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx-4 \int x^2 \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+6 \int \log \left (x^3\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \frac {\log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )-2 \int \left (-4 x^2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}+2 x^4 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}+\log (27) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}+\frac {\left (-2+x^2\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}\right ) \, dx-4 \int x^2 \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+6 \int \log \left (x^3\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \frac {\left (-2+x^2\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )-2 \int \frac {\log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx-4 \int x^4 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx-4 \int x^2 \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+6 \int \log \left (x^3\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+8 \int x^2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx-(2 \log (27)) \int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \frac {\log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )-2 \int \left (-\frac {2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}+\frac {x^2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)}\right ) \, dx-4 \int x^4 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx-4 \int x^2 \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+6 \int \log \left (x^3\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+8 \int x^2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx-(2 \log (27)) \int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ &=-\left (2 \int \frac {x^2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx\right )-2 \int \frac {\log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx-4 \int x^4 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+4 \int \frac {\left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x}}{\log (x)} \, dx-4 \int x^2 \log (\log (x)) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+6 \int \log \left (x^3\right ) \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+8 \int x^2 \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx-(2 \log (27)) \int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^{-1+x} \, dx+\int \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \log \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 25, normalized size = 1.00 \begin {gather*} \left (\log ^2\left (\frac {x^3}{3}\right )-\left (-2+x^2+\log (\log (x))\right )^2\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.88, size = 47, normalized size = 1.88 \begin {gather*} {\left (-x^{4} + 4 \, x^{2} + \log \relax (3)^{2} - 6 \, \log \relax (3) \log \relax (x) + 9 \, \log \relax (x)^{2} - 2 \, {\left (x^{2} - 2\right )} \log \left (\log \relax (x)\right ) - \log \left (\log \relax (x)\right )^{2} - 4\right )}^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 115, normalized size = 4.60
method | result | size |
risch | \(\left (-\ln \left (\ln \relax (x )\right )^{2}+\left (-2 x^{2}+4\right ) \ln \left (\ln \relax (x )\right )+\left (-\ln \relax (3)+3 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}\right )^{2}-x^{4}+4 x^{2}-4\right )^{x}\) | \(115\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 44, normalized size = 1.76 \begin {gather*} e^{\left (x \log \left (x^{2} - \log \relax (3) + 3 \, \log \relax (x) + \log \left (\log \relax (x)\right ) - 2\right ) + x \log \left (-x^{2} - \log \relax (3) + 3 \, \log \relax (x) - \log \left (\log \relax (x)\right ) + 2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 52, normalized size = 2.08 \begin {gather*} {\left (-x^4-2\,x^2\,\ln \left (\ln \relax (x)\right )+4\,x^2+{\ln \left (x^3\right )}^2-2\,\ln \relax (3)\,\ln \left (x^3\right )-{\ln \left (\ln \relax (x)\right )}^2+4\,\ln \left (\ln \relax (x)\right )+{\ln \relax (3)}^2-4\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________