Optimal. Leaf size=28 \[ 3+x+\log ^{e^{\frac {1}{5} \left (2-\left (4+2 x-x^2\right )^2\right )}}(x) \]
________________________________________________________________________________________
Rubi [F] time = 6.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x \log (x)+\log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \left (5 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \left (-16 x+8 x^2+12 x^3-4 x^4\right ) \log (x) \log (\log (x))\right )}{5 x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {5 x \log (x)+\log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \left (5 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \left (-16 x+8 x^2+12 x^3-4 x^4\right ) \log (x) \log (\log (x))\right )}{x \log (x)} \, dx\\ &=\frac {1}{5} \int \left (5+\frac {e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{-1+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \left (5-4 x \left (4-2 x-3 x^2+x^3\right ) \log (x) \log (\log (x))\right )}{x}\right ) \, dx\\ &=x+\frac {1}{5} \int \frac {e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{-1+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \left (5-4 x \left (4-2 x-3 x^2+x^3\right ) \log (x) \log (\log (x))\right )}{x} \, dx\\ &=x+\frac {1}{5} \int \left (\frac {5 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{-1+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x)}{x}-4 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} (-1+x) \left (-4-2 x+x^2\right ) \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x))\right ) \, dx\\ &=x-\frac {4}{5} \int e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} (-1+x) \left (-4-2 x+x^2\right ) \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x)) \, dx+\int \frac {e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{-1+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x)}{x} \, dx\\ &=x-\frac {4}{5} \int \left (4 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x))-2 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} x \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x))-3 e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} x^2 \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x))+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} x^3 \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x))\right ) \, dx+\int \frac {e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{-1+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x)}{x} \, dx\\ &=x-\frac {4}{5} \int e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} x^3 \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x)) \, dx+\frac {8}{5} \int e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} x \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x)) \, dx+\frac {12}{5} \int e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} x^2 \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x)) \, dx-\frac {16}{5} \int e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \log (\log (x)) \, dx+\int \frac {e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )} \log ^{-1+e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x)}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 31, normalized size = 1.11 \begin {gather*} x+\log ^{e^{\frac {1}{5} \left (-14-16 x+4 x^2+4 x^3-x^4\right )}}(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 26, normalized size = 0.93 \begin {gather*} x + \log \relax (x)^{e^{\left (-\frac {1}{5} \, x^{4} + \frac {4}{5} \, x^{3} + \frac {4}{5} \, x^{2} - \frac {16}{5} \, x - \frac {14}{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 12.21, size = 26, normalized size = 0.93 \begin {gather*} x + \log \relax (x)^{e^{\left (-\frac {1}{5} \, x^{4} + \frac {4}{5} \, x^{3} + \frac {4}{5} \, x^{2} - \frac {16}{5} \, x - \frac {14}{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 0.96
method | result | size |
risch | \(x +\ln \relax (x )^{{\mathrm e}^{-\frac {1}{5} x^{4}+\frac {4}{5} x^{3}+\frac {4}{5} x^{2}-\frac {16}{5} x -\frac {14}{5}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 26, normalized size = 0.93 \begin {gather*} x + \log \relax (x)^{e^{\left (-\frac {1}{5} \, x^{4} + \frac {4}{5} \, x^{3} + \frac {4}{5} \, x^{2} - \frac {16}{5} \, x - \frac {14}{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.40, size = 26, normalized size = 0.93 \begin {gather*} x+{\ln \relax (x)}^{{\mathrm {e}}^{-\frac {x^4}{5}+\frac {4\,x^3}{5}+\frac {4\,x^2}{5}-\frac {16\,x}{5}-\frac {14}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.06, size = 36, normalized size = 1.29 \begin {gather*} x + e^{e^{- \frac {x^{4}}{5} + \frac {4 x^{3}}{5} + \frac {4 x^{2}}{5} - \frac {16 x}{5} - \frac {14}{5}} \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________