Optimal. Leaf size=21 \[ \left (e^4+x\right ) \left (-e+4 \left (1+e+3 x+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 29, normalized size of antiderivative = 1.38, number of steps used = 1, number of rules used = 0, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} 4 x^3+12 x^2+(4+3 e) x+e^4 (2 x+3)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(4+3 e) x+12 x^2+4 x^3+e^4 (3+2 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 32, normalized size = 1.52 \begin {gather*} 4 x+3 e x+12 e^4 x+12 x^2+4 e^4 x^2+4 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 30, normalized size = 1.43 \begin {gather*} 4 \, x^{3} + 12 \, x^{2} + 4 \, {\left (x^{2} + 3 \, x\right )} e^{4} + 3 \, x e + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 30, normalized size = 1.43 \begin {gather*} 4 \, x^{3} + 12 \, x^{2} + 4 \, {\left (x^{2} + 3 \, x\right )} e^{4} + 3 \, x e + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 1.24
method | result | size |
gosper | \(x \left (4 x \,{\mathrm e}^{4}+4 x^{2}+3 \,{\mathrm e}+12 \,{\mathrm e}^{4}+12 x +4\right )\) | \(26\) |
norman | \(4 x^{3}+\left (4 \,{\mathrm e}^{4}+12\right ) x^{2}+\left (3 \,{\mathrm e}+12 \,{\mathrm e}^{4}+4\right ) x\) | \(29\) |
default | \({\mathrm e}^{4} \left (4 x^{2}+12 x \right )+3 x \,{\mathrm e}+4 x^{3}+12 x^{2}+4 x\) | \(32\) |
risch | \(4 x^{2} {\mathrm e}^{4}+12 x \,{\mathrm e}^{4}+3 x \,{\mathrm e}+4 x^{3}+12 x^{2}+4 x\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 30, normalized size = 1.43 \begin {gather*} 4 \, x^{3} + 12 \, x^{2} + 4 \, {\left (x^{2} + 3 \, x\right )} e^{4} + 3 \, x e + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.19, size = 28, normalized size = 1.33 \begin {gather*} 4\,x^3+\left (4\,{\mathrm {e}}^4+12\right )\,x^2+\left (3\,\mathrm {e}+12\,{\mathrm {e}}^4+4\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 27, normalized size = 1.29 \begin {gather*} 4 x^{3} + x^{2} \left (12 + 4 e^{4}\right ) + x \left (4 + 3 e + 12 e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________